ISE Developer Blog

Detecting “Action” and “Cut” in Archival Footage Using a Multi-model Computer Vision and Audio Approach with Azure Cognitive Services

Movies and TV shows require multiple takes per scene and may have a substantial amount of archival footage as a result. Here, we use Azure Cognitive Services and custom code to develop a multi-model Machine Learning (ML) solution to automatically detect discardable footage to save media companies manual archiving hours and storage space.

Evaluation Framework for Information Extraction

In this blog post we cover the process, requirements, and the design of an evaluation framework for NLP and Information Extraction. We cover the reasoning behind such a framework, and discuss its implementation with examples from a Named Entity Recognition evaluation point of view.

Sequence Intent Classification Using Hierarchical Attention Networks

We analyze how Hierarchical Attention Neural Networks could be helpful with malware detection and classification scenarios, demonstrating the usefulness of this approach for generic sequence intent analysis. The novelty of our approach is in applying techniques that are used to discover structure in a narrative text to data that describes the behavior of executables.

Permissively-Licensed Named Entity Recognition on the JVM

The ability to correctly identify entities, such as places, people, and organizations, adds a powerful level of natural language understanding to applications. This post introduces a MIT-licensed one-click deployment to Azure for web services that lets developers get started with a wide range of natural language tasks in 5 minutes or less, by consuming simple HTTP services for language identification, tokenization, part-of-speech-tagging and named entity recognition.