C++ with Visual Studio 2019 and Windows Subsystem for Linux (WSL)

Erika Sweet

Erika

In Visual Studio 2019 version 16.1 Preview 3 we have added native support for using C++ with the Windows Subsystem for Linux (WSL). WSL lets you run a lightweight Linux environment directly on Windows, including most command-line tools, utilities, and applications. In Visual Studio you no longer need to add a remote connection or configure SSH in order to build and debug on your local WSL installation. This will save you time getting up and running in a Linux environment and eliminates the need to copy and maintain sources on a remote machine. In order to use our native support for WSL you will need to install the Linux Development with C++ workload in Visual Studio.

In this blog post, we’ll first look at how to set up WSL. We will then walk-through how to use it with a CMake project and MSBuild-based Linux project. If you are just getting started with our native support for CMake, be sure to check out our CMake Support in Visual Studio introductory page too.

Setting up WSL

You can find details on how to install WSL here, but the easiest way is to download your distro of choice (Ubuntu, Debian, etc.) from the Windows Store.

To configure your WSL installation to work with Visual Studio you need the following tools installed: gcc, gdb, make, rsync, and zip. You can install them on distros that use apt with this command:

sudo apt install g++ gdb make rsync zip

The inclusion of rsync and zip allows Visual Studio to extract header files from your WSL instance to the Windows filesystem to use for IntelliSense. Due to the lack of visibility into the root file system of WSL from Windows, a local rsync copy is done inside WSL to copy the headers to a Windows visible location. This is a one-time operation that Visual Studio performs to configure IntelliSense for Linux connections.

Visual Studio CMake projects and WSL

Let’s start by looking at a simple CMake project.

1. Start Visual Studio 2019 (version 16.1 or later) and create a new CMake project using the “CMake Project” template or open an existing one.

2. Navigate to the configuration drop-down menu and select “Manage Configurations…” This will open the CMake Settings Editor.

"Manage Configurations..."
3. Visual Studio creates an x64-Debug or x86-Debug configuration by default. You can add a new WSL configuration by clicking on the green plus sign above the configuration manager on the left-hand side of the editor.

Add a new connection
4. Select a WSL-Debug configuration.

Select a WSL-Debug configuration
5. By default, Visual Studio will pick up on your default WSL configuration. If you have side-by-side installations of WSL, then you can specify which WSL executable Visual Studio should use by setting the “Path to WSL executable” property under the “General” section of the CMake Settings editor.

6. Save the editor (Ctrl + S) and select your WSL-Debug configuration as your active configuration using the configuration drop-down menu at the top of the page. This will start the cache generation of your WSL configuration.

Select WSL configuration
7. If you don’t have CMake on your WSL installation, then you will be prompted to automatically deploy a recent version of CMake from Visual Studio. If you are missing any other dependencies (gcc, gdb, make, rsync, zip) then see above for Setting up WSL.

8. In the Solution Explorer expand the project subfolder and in the .cpp file set a breakpoint in main() .

9. In the launch bar change the launch target from “Current Document” to your project name.

10. Now click “Start” (Debug > Start) or press F5. Your project will build, the executable will launch, and you will hit your breakpoint. You can see the output of your program (in this case, “Hello CMake”) in the Linux Console Window.

Debug program to see "Hello CMake"

 

Visual Studio MSBuild-based projects and WSL

We also support using WSL from our MSBuild-based Linux projects in Visual Studio. Here are the steps for getting started.

1. Create a new Linux Console Application (you can filter platform by Linux and look for “Console App”) in Visual Studio 2019 version 16.1 or later or open an existing one.

2. Right-click on the project in the Solution Explorer and select “Properties” to open the Project Property Pages.

3. In the dialog that opens you will see the “General” property page. On this page, there is an option for “Platform Toolset.” Change this from “Remote_GCC_1_0” to “WSL_1_0.”

4. By default, Visual Studio will target the WSL installation that is set as the default through wslconfig. If you have side-by-side installations of WSL, then you can specify which WSL executable Visual Studio should use by setting the “WSL *.exe full path” option directly below “Platform Toolset.” Press OK.

5. Set a breakpoint in main.cpp and click “Start Debugging” (Debug > Start Debugging). If you are missing any dependencies on your WSL installation (gcc, gdb, make, rsync, zip) then see above for Setting up WSL. You can see the output of your program in the Linux Console Window.

Give us your feedback!

If you have feedback on WSL or anything regarding our Linux support in Visual Studio, we would love to hear from you. We can be reached via the comments below or via email (visualcpp@microsoft.com). If you encounter other problems with Visual Studio or MSVC or have a suggestion, you can use the Report a Problem tool in Visual Studio or head over to Visual Studio Developer Community. You can also find us on Twitter (@VisualC) and (@erikasweet_).


Coming soon…

More announcements about AddressSanitizer integration for Linux projects, Code Analysis quick fixes, and Quick Info improvements are coming to the C++ Team Blog later this week. Stay tuned!

Erika Sweet
Erika Sweet

Follow Erika   

26 Comments
Avatar
Andrew Luo 2019-05-15 23:49:19
“The inclusion of rsync and zip allows Visual Studio to extract header files from your WSL instance to the Windows filesystem to use for IntelliSense. Due to the lack of visibility into the root file system of WSL from Windows, a local rsync copy is done inside WSL to copy the headers to a Windows visible location. This is a one-time operation that Visual Studio performs to configure IntelliSense for Linux connections.” Isn't it possible to perform read-only access to the WSL filesystem via AppData\Local\Packages\CanonicalGroupLimited.UbuntuonWindows_79rhkp1fndgsc\LocalState\rootfs for example?  In the official VS Code documentation (https://code.visualstudio.com/docs/cpp/config-wsl) this is how it's done.  Also, in the latest version of Windows (1903), isn't the WSL filesystem directly accessible via \\wsl$?  I'm just wondering if it's necessary to make this copy given these improvements.
Avatar
Mark de Wit 2019-05-15 12:12:54
I'm loving this feature!  I'll try out the WSL integration for sure.  Here is some early feedback: I have a version of cmake built from the kitware sources myself - this installed in /usr/local/bin/cmake, but it appears you only search for cmake in /usr/bin.  It would be great if you could either expand the locations you search, or use whatever cmake appears in the path? Update: I managed to build something (created a softlink to my cmake binary to proceed).  However, when trying to run the debugger I only get a dialog with the error message: The given key was not present in the dictionary".   No further information as to which key, what dictionary.   Note - my WSL is Ubuntu 18.04, gcc 7.4.0
Avatar
Кузнецов Евгений Олегович 2019-05-15 09:58:15
When using the WSL + MSBuild, I ran into the following problems: 1) It seems to be missing the "Lib" target in Linux.WSL.targets, so its impossible to build a static library. 2) Parallel compilation doesn't work. 3) MSBuild doesn't check if the translation unit should be rebuilt, so it always rebuilds the whole project. MSBuild WSL support is the great functionality, and I hope it will be fixed in the new preview and it will be possible to use it.
Avatar
游 虎 2019-05-14 21:33:49
Project build success. But got this error and all headers cannot be loaded and IntelliSense is totally broken: Unable to find a stored connection for machine ''. Please add a new connection using Tools > Options > Cross Platform > Connection Manager. Project: https://github.com/btccom/btcagent/tree/deveth Clone to G:\work\btcagent.vs2019 (mount to /mnt/g/btcagent.vs2019 and /g/btcagent.vs2019 in WSL). VS2019 version 16.1.0 Preview 3.0.
Avatar
屿 罗 2019-05-13 06:15:45
Hi Erika, good feature! I'm wondering how to deploy my project after development. Do I still need to open a remote connection?
Avatar
Patrik Huber 2019-05-12 08:05:56
I followed this tutorial exactly (with the CMake example project), changed the launch target to the executable, and when I hit F5 (Debug), I get an error dialog box "The given key was not present in the dictionary.". The output window shows the following: cd /mnt/c/Users/Patrik/VSCMakeProjectWSLTest/VSCMakeProjectWSLTest/out/build/WSL-Debug;export CXXFLAGS=-fsanitize\=address;export CFLAGS=-fsanitize\=address;export LDFLAGS=-fsanitize\=address;$HOME/.vs/cmake/bin/cmake --build "/mnt/c/Users/Patrik/VSCMakeProjectWSLTest/VSCMakeProjectWSLTest/out/build/WSL-Debug" --target VSCMakeProjectWSLTest ; [100%] Built target VSCMakeProjectWSLTest Edit: Sorry for the bad formatting, not sure how to format code/output here, backticks and ">" didn't work.
Avatar
Ike Starnes 2019-05-10 20:19:33
WSL_1_0 is not an option in the "Platform Toolset" for a brand new VCXPROJ. I only see "Remote_GCC_1_0" in the drop down list. Edit: Also, for a CMake project, WSL options are NOT availble when trying to add a new configuration. Seems something is missing.
Lawrence Mukwaya
Lawrence Mukwaya 2019-05-10 16:47:37
Great Feature Am  Loving it!
Avatar
Warren Buckley 2019-05-10 09:24:49
I've tried following this walkthrough but VS2019 does not see the WSL. None of the options you showed for selecting the WSL appears in either the CMakeConfig or the property pages of a Linux console project.. Edit: Nevermind, didn't see that I needed the preview version of VS in order to use this feature.
Avatar
David Hunter 2019-05-09 02:57:46
Hi, works great for the test program. Our software has already moved on from GCC 7 which is what you get by default on Ubuntu Bionic. I did try GCC 8 and Clang 8 and they seemed to work for the test. Should I expect them to work in general for large code bases?
Avatar
Hristo Hristov 2019-05-06 18:24:09
Could this be used to cross-compile on WSL and deploy and debug on a remote arm device like NVIDIA Nano easily?
Piotr Maciejewski
Piotr Maciejewski 2019-05-06 17:29:50
Great feature.