August 18th, 2021

Understanding the cost of C# delegates

Paulo Morgado
Support Escalation Engineer

Delegates are widely used in C# (and .NET, in general). Either as event handlers, callbacks, or as logic to be used by other code (as in LINQ).

Despite their wide usage, it’s not always obvious to the developer what delegate instantiation will look like. In this post, I’m going to show various usages of delegates and what code they generate so that you can see the costs associated with using them in your code.

Explicit instantiation

Throughout the evolution of the C# language, delegate invocation has evolved with new patterns without breaking the previously existing patterns.

Initially (versions 1.0 and 1.2), the only instantiation pattern available was the explicit invocation of the delegate type constructor with a method group:

delegate void D(int x);

class C
{
    public static void M1(int i) {...}
    public void M2(int i) {...}
}

class Test
{
    static void Main() {
        D cd1 = new D(C.M1);        // static method
        C t = new C();
        D cd2 = new D(t.M2);        // instance method
        D cd3 = new D(cd2);         // another delegate
    }
}

Implicit conversion

C# 2.0 introduced method group conversions where an implicit conversion (Implicit conversions) exists from a method group (Expression classifications) to a compatible delegate type.

This allowed for short-hand instantiation of delegates:

delegate string D1(object o);

delegate object D2(string s);

delegate object D3();

delegate string D4(object o, params object[] a);

delegate string D5(int i);

class Test
{
    static string F(object o) {...}

    static void G() {
        D1 d1 = F;            // Ok
        D2 d2 = F;            // Ok
        D3 d3 = F;            // Error -- not applicable
        D4 d4 = F;            // Error -- not applicable in normal form
        D5 d5 = F;            // Error -- applicable but not compatible

    }
}

The assignment to d1 implicitly converts the method group F to a value of type D1.

The assignment to d2 shows how it is possible to create a delegate to a method that has less derived (contravariant) parameter types and a more derived (covariant) return type.

The assignment to d3 shows how no conversion exists if the method is not applicable.

The assignment to d4 shows how the method must be applicable in its normal form.

The assignment to d5 shows how parameter and return types of the delegate and method are allowed to differ only for reference types.

The compiler will translate the above code to:

delegate string D1(object o);

delegate object D2(string s);

delegate object D3();

delegate string D4(object o, params object[] a);

delegate string D5(int i);

class Test
{
    static string F(object o) {...}

    static void G() {
        D1 d1 = new D1(F);            // Ok
        D2 d2 = new D2(F);            // Ok
        D3 d3 = new D3(F);            // Error -- not applicable
        D4 d4 = new D4(F);            // Error -- not applicable in normal form
        D5 d5 = new D5(F);            // Error -- applicable but not compatible

    }
}

As with all other implicit and explicit conversions, the cast operator can be used to explicitly perform a method group conversion. Thus, this code:

object obj = (EventHandler)myDialog.OkClick;

will be converted by the compiler to:

object obj = new EventHandler(myDialog.OkClick);

This instantiation pattern might create a performance issue in loops or frequently invoke code.

This innocent looking code:

static void Sort(string[] lines, Comparison<string> comparison)
{
    Array.Sort(lines, comparison);
}

...
Sort(lines, StringComparer.OrdinalIgnoreCase.Compare);
...

Will be translated to:

static void Sort(string[] lines, Comparison<string> comparison)
{
    Array.Sort(lines, comparison);
}

...
Sort(lines, new Comparison<string>(StringComparer.OrdinalIgnoreCase.Compare));
...

Which means that an instance of the delegate will be created on every invocation. A delegate instance that will have to be later collected by the garbage collector (GC).

One way to avoid this repeated instantiation of delegates is to pre-instantiate it:

static void Sort(string[] lines, Comparison<string> comparison)
{
    Array.Sort(lines, comparison);
}

...
private static Comparison<string> OrdinalIgnoreCaseComparison = StringComparer.OrdinalIgnoreCase.Compare;
...

...
Sort(lines, OrdinalIgnoreCaseComparison);
...

Which will be translated by the compiler to:

static void Sort(string[] lines, Comparison<string> comparison)
{
    Array.Sort(lines, comparison);
}

...
private static Comparison<string> OrdinalIgnoreCaseComparison = new Comparison<string>(StringComparer.OrdinalIgnoreCase.Compare);
...

...
Sort(lines, OrdinalIgnoreCaseComparison);
...

Now, only one instance of the delegate will be created.

Anonymous functions

C# 2.0 also introduced the concept of anonymous method expressions as a way to write unnamed inline statement blocks that can be executed in a delegate invocation.

Like a method group, an anonymous function expression can be implicitly converted to a compatible delegate.

C# 3.0 introduced the possibility of declaring anonymous functions using lambda expressions.

Being a new language concept allowed the compiler designers to interpret the expressions in new ways.

The compiler can generate a static method and optimize the delegate creation if the expression has no external dependencies:

This code:

int ExecuteOperation(int a, int b, Func<int, int, int> operation)
{
    return operation(a, b);
}

...
var r = ExecuteOperation(2, 3, (a, b) => a + b);
...

Will be translated to:

[Serializable]
[CompilerGenerated]
private sealed class <>c
{
      public static readonly <>c <>9 = new <>c();

      public static Func<int, int, int> <>9__4_0;

      internal int <M>b__4_0(int a, int b)
      {
            return a + b;
      }
}
...

int ExecuteOperation(int a, int b, Func<int, int, int> operation)
{
    return operation(a, b);
}

...
var r = ExecuteOperation(2, 3, <>c.<>9__4_0 ?? (<>c.<>9__4_0 = new Func<int, int, int>(<>c.<>9.<M>b__4_0)));
...

The compiler is, now, “smart” enough to instantiate the delegate only on the first use.

As you can see, the member names generated by the C# compiler are not valid C# identifiers. They are valid IL identifiers, though. The reason the compiler generates names like this is to avoid name collisions with user code. There is no way to write C# source code that will have identifiers with < or >.

This optimization is only possible because the operation is a static function. If, instead, the code was like this:

int ExecuteOperation(int a, int b, Func<int, int, int> operation)
{
    return operation(a, b);
}

int Add(int a, int b) => a + b;

...
var r = ExecuteOperation(2, 3, (a, b) => Add(a, b));
...

We’d be back to a delegate instantiation for every invocation:

int ExecuteOperation(int a, int b, Func<int, int, int> operation)
{
    return operation(a, b);
}

int Add(int a, int b) => a + b;

int <M>b__4_0(int a, int b) => Add(a, b);

...
var r = ExecuteOperation (2, 3, new Func<int, int, int> (<M>b__4_0));
...

This is due to the operation being dependent on the instance invoking the operation.

On the other hand, if the operation is a static function:

int ExecuteOperation(int a, int b, Func<int, int, int> operation)
{
    return operation(a, b);
}

static int Add(int a, int b) => a + b;

...
var r = ExecuteOperation(2, 3, (a, b) => Add(a, b));
...

The compiler is clever enough to optimize the code:

[Serializable]
[CompilerGenerated]
private sealed class <>c
{
      public static readonly <>c <>9 = new <>c();

      public static Func<int, int, int> <>9__4_0;

      internal int <M>b__4_0(int a, int b)
      {
            return Add(a, b);
      }
}
...

int ExecuteOperation(int a, int b, Func<int, int, int> operation)
{
    return operation(a, b);
}

static int Add(int a, int b) => a + b;

...
var r = ExecuteOperation(2, 3, <>c.<>9__4_0 ?? (<>c.<>9__4_0 = new Func<int, int, int>(<>c.<>9.<M>b__4_0)));
...

C# 11

Starting with C# 11, the compiler will reuse the delegate for static method groups.

This code:

int ExecuteOperation(int a, int b, Func<int, int, int> operation)
{
    return operation(a, b);
}

static int Add(int a, int b) => a + b;

...
var r = ExecuteOperation(2, 3, Add);
...

Will now be translated to:

[CompilerGenerated]
private static class <>O
{
    public static Func<int, int, int> <0>__Add;
}
...

int ExecuteOperation(int a, int b, Func<int, int, int> operation)
{
    return operation(a, b);
}

static int Add(int a, int b) => a + b;

...
int num = ExecuteOperation(2, 3, <>O.<0>__Add ?? (<>O.<0>__Add = new Func<int, int, int>(Add)));
...

Closures

Whenever a lambda (or anonymous) expression references a value outside of the expression, a closure class will always be created to hold that value, even if the expression would, otherwise, be static.

This code:

int ExecuteOperation(int a, int b, Func<int, int, int> operation)
{
    return operation(a, b);
}

static int Add(int a, int b) => a + b;

...
var o = GetOffset();
var r = ExecuteOperation(2, 3, (a, b) => Add(a, b) + o);
...

Wiil cause the compiler to generate this code:

[CompilerGenerated]
private sealed class <>c__DisplayClass4_0
{
      public int o;

      internal int <N>b__0(int a, int b)
      {
            return Add(a, b) + o;
      }
}

int ExecuteOperation(int a, int b, Func<int, int, int> operation)
{
    return operation(a, b);
}

static int Add(int a, int b) => a + b;

...
<>c__DisplayClass4_0 <>c__DisplayClass4_ = new <>c__DisplayClass4_0();
<>c__DisplayClass4_.o = GetOffset();
ExecuteOperation(2, 3, new Func<int, int, int>(<>c__DisplayClass4_.<M>b__0));
...

Now, not only a new delegate will be instantiated, an instance of class to hold the dependent value. This compiler generated field to capture the variables is what is called in computer science a closure.

Closures allow the generated function to access the variables in the scope where they were defined.

However, by capturing the local environment or context, closure can unexpectedly hold a reference to resources that would otherwise be collected sooner causing them to be promoted to highier generations and, thus, incur in more CPU load because of the work the garbage collector (GC) needs to perform to reclaim that memory.

Static anonymous functions

Because it’s very easy to write a lambda expression that starts with the intention of being static and ends up being not static, C# 9.0 introduces static anonymous functions by allowing the static modifier to be applied to a lambda (or anonymous) expression to ensure that the expression is static:

var r = ExecuteOperation(2, 3, static (a, b) => Add(a, b));

If the same changes above are made, now the compiler will “complain”:

var o = GetOffset();
var r = ExecuteOperation(2, 3, static (a, b) => Add(a, b) + o); // Error CS8820: A static anonymous function cannot contain a reference to 'o'

Workarounds

What can a developer do to avoid these unwanted instantiations?

We’ve seen what the compiler does, so, we can do the same.

With this small change to the code:

int ExecuteOperation(int a, int b, Func<int, int, int> operation)
{
    return operation(a, b);
}

int Add(int a, int b) => a + b;
Func<int, int, int> addDelegate;

...
var r = ExecuteOperation(2, 3, addDelegate ?? (addDelegate = (a, b) => Add(a, b));
...

The only thing the compiler will have to do now is add the delegate instantiation, but the same instance of the delegate will be used throughout the lifetime of the enclosing type.

int ExecuteOperation(int a, int b, Func<int, int, int> operation)
{
    return operation(a, b);
}

int Add(int a, int b) => a + b;
Func<int, int, int> addDelegate;

...
var r = ExecuteOperation(2, 3, addDelegate ?? (addDelegate = new Func<int, int, int>((a, b) => Add(a, b)));
...

Closing

We’ve seen the different ways of using delegates and the code generated by the compiler and its side effects.

Delegates have powerful features such as capturing local variables. And while these features can make you more productive, they aren’t free. Being aware of the differences in the generated code allows making informed decisions on what you value more for a given part of your application.

Instantiating a delegate more frequently can incur performance penalties by allocating more memory which also increases CPU load because of the work the garbage collector (GC) needs to perform to reclaim that memory.

For that reason, we’ve seen how we can control the code generated by the compiler in a way the best suits our performance needs.

Author

Paulo Morgado
Support Escalation Engineer

Helping customers with .NET and C#

31 comments

Discussion is closed. Login to edit/delete existing comments.

  • Victor ZamoraMicrosoft employee

    Nice Post Paulo!
    It’s always worth to know what happens under the hood.

  • Gauthier M.

    Great article ! Good to know.

  • Adam Łyskawa

    Hey, what happens when I pass a static method as a type? This works in C#10. Is there a hidden cost involved? I have a code fragment, where I use something like to check if the delegates on the list match a pattern like . It looks like . When I add delegates to the list, they are either lambdas, or static methods of a static class, so it looks like or . What are hidden costs of that, if any? I suspect is used under the hood, but I'm not sure. What is the cost...

    Read more
  • Y Zhang

    Shouldn’t the compiler be “smart” enough to do the workarounds for us😋?

    • Paulo MorgadoMicrosoft employee Author

      The compiler doesn’t know if the code being compiled is new or 20 years old. The compiler needs to be consistent.

      New language features, like static lambdas are a way for the developer to tell the compiler that it should not capture any context.

      Most of the times it’s good enough. But if this is a hot path in a performance sensitive system, it’s one of the many things you need to pay attention to.

  • Глеб Хлебов

    Nice post, thanks for helping us even with such little things, good luck!

  • Felipe PessotoMicrosoft employee

    Great post Paulo. I love this kind of posts where we can see the evolution of the language and how to tweak when need to.
    Something else I’m curious about is the cost of calling the method. If it would be the same for the different approaches: method call, virtual method call, delegates and the new function pointer.

    • Paulo MorgadoMicrosoft employee Author

      Thanks, Felipe.

      After the instantiation, the cost of invoking is the same. But that’s a story for another post. 😉

  • Thomas Levesque · Edited

    Nice post, thanks!
    The article covers the cost of instantiating delegates, but what about the cost of invoking them (vs. directly invoking the method)?

    • Paulo MorgadoMicrosoft employee Author

      That’s a whole other topic, Thomas.

      Sometimes there’s just no choice, like with LINQ.

      But that might be a good segway for a part 2.

  • Dominic Catherin

    Great digestible post. Love the acknowledgement and work MS is doing around allocations and making the community aware of this. It certainly way to easy to allocate especially when using Linq and lambdas. Allocations add up so its great to see posts like this.

    • Jared ParsonsMicrosoft employee

      This is still a change we are considering for a future version of C# but it has the following considerations:

      None of these are hard blockers to us doing the change. In fact we've generally accepted this are just costs of doing the work here.

      At the same time we don't have strong evidence that these allocations significantly contribute to the performance of .NET programs overall. Yes there are spot cases we find for this but it's not a recurring problem that we see. Hence at the moment the benefit doesn't seemingly outweigh the negatives. If we found that evidence though we'd...

      Read more
      • Kirsan

        Thanks.

  • Payton Byrd

    Where does inlining and derefrencing come in for delegates?

    • Paulo MorgadoMicrosoft employee Author

      Would you care to elaborate a bit more on your question, Payton?