
Latest and Greatest in
Visual Studio for
C++ developers

Steve.Carroll & Daniel.Moth
@microsoft.com

https://blogs.msdn.microsoft.com/vcblog/

Win an Xbox One S
Forza Horizon 3

+ Destiny 2
Bundle!

Take this survey: https://aka.ms/cppcon

Mission of C++ Product Team at Microsoft (DevDiv)

Make the lives of all C++ developers on the planet better

1. by participating with the C++ Standards committee

2. by investing in the Microsoft Visual C++ (MSVC) Compiler

3. by improving the Visual Studio IDE

4. by continuing to enhance the C++ extension for Visual Studio Code

Visual Studio Code: C/C++ Extension

• Lightweight, keyboard focused
• Git integration
• Code Editing

• IntelliSense, Code Browsing, Switch header/source, Code formatting (clang-format)

• Debugging
• Core-dump debugging, launch, attach, breakpoints (incl. conditional and function),

stepping, threads, call stack, watch, GDB and MI commands

• Easily run, build, test, and run external tasks

https://code.visualstudio.com/docs/languages/cpp

AGENDA

• Microsoft Visual C++ (MSVC) Compiler and Libraries
• Conformance
• Compiler Diagnostics
• Code Analysis
• Code Gen Quality
• Build Throughput

• Visual Studio 2017
• Faster installation and your disk will thank you
• Pain-free upgrade
• Just point Visual Studio to your code
• Use Visual Studio for all your projects and target platforms
• Be more productive than ever

MSVC Conformance

C+
+
11

C+
+
14

C+
+
17

default/deleted func, Inline namespaces, User-defined literals, noexcept, char16_t/char32_t, alignas/alignof, __func__, Extended sizeof, Inheriting constructors, Unicode string
literals, Magic statics, thread_local, Unrestricted unions, Attributes, Universal char names in literals, Data-dep ordering attributes, constexpr, Expression SFINAE (via Boost),

Expression SFINAE (via more libraries), STL: All C++11 Features

auto, decltype(auto) return types, Generic lambdas, Generalized lambda captures, Binary literals, Sized Deallocators, Deprecated attribute, Digit separator, Variable Templates,
NSDMI for Aggregates, STL: All C++14 Features, Extended Constexpr

Auto with braced-init list, u8 char literal, Attributes on namespace and enum, Removing trigraphs, typename in template template-param, Nested Namespace, Ignoring
unrecognized attributes, Terse static_assert, Attribute [[fallthrough]], Generalized range-based for-loops,

STL:<any>, STL:<optional>, STL:<string_view>, STL:<variant>, STL:<algorithm> sample(), STL:<tuple> apply()

Two-phase Name Lookup (partial support) under /permissive-

if constexprConstexpr lambdasConstruction rules for enum class values

Guaranteed copy elision

Structured Bindings Selection statements with initializers

__has_include

Remove register keyword

Capturing *this by value [[maybe_unused]] [[nodiscard]]Using attribute namespaces without repetition

Removing operator++ for bool

C+
+
TS

C++ ModulesC++ Coroutines C++ Concepts

STL:<string_view> UDLs

Fixing qualification conversions

Allowing more non-type template args Fold expressions Removing some empty unary folds

Hexfloat literalsAdding noexcept to the type system

Extended aggregate initialization

Rewording inheriting constructors

Over-aligned dynamic memory allocation

Template argument deduction for class templates

Declaring non-type template parameters with autoRefining expression evaluation order

Inline variables

Matching template template-parameters to compatible arguments

Removing dynamic-exception-specifications

Pack expansions in using-declarations

Filesystem*(experimental)

Compiler Switches

• /permissive-
• A “less permissive”, more conforming mode in the compiler
• Off by default now… on by default at some point in the future
• /Zc conformance switches available for fine-tuning /permissive-

• /std:c++14
• On by default, for now
• The latest ISO-blessed C++ standard

• i.e. standards features up to C++14

• /std:c++17
• /std:c++latest (tracks the latest C++ draft)

• Off by default, forever
• Every implemented feature that is not part of a finalized standard yet

Conformance Testing with ~60 OSS Libraries from GitHub

• Testing with GitHub master branches and compiler development trunk
• MSVC default mode – 58 projects
• MSVC /std:c++17 mode – 58 projects
• MSVC /permissive- mode – 55 projects

Compiler Diagnostics Improvements

• Column Information and Source Context : /diagnostics:caret

• Special Member Function errors

Continued Compiler Diagnostics Improvements
• Template dependent name diagnostics

• Member initialization order

Example Current diagnostic (under /permissive-) New diagnostic under /permissive-

template<typename T>
void bar()
{

T::foo<int>(); // Should be T::template foo<T>();
}

test.cpp(5,17): error C2187: syntax error:
')' was unexpected here

T::foo<int>();
^

test.cpp(5,8): error C7510: 'foo':
use of dependent template name
requires 'template' keyword

T::foo<int>();
^

template <typename T>
void bar() {

T::Type x; // Should be typename T::Type x
}

test.cpp(5,13): error C2760: syntax error:
unexpected token 'identifier', expected
';'

T::Type x;
^

test.cpp(5,5): error C7511: 'Type':
use of dependent type name must be
prefixed with 'typename'

T::Type x;
^

struct X {};
template <class T>
void bar() {

typename X x; // Should be "X x"
}

test.cpp(5,11): error C2760: syntax error:
unexpected token 'identifier', expected
'id-expression'

typename X x;
^

test.cpp(5,11): error C7511: 'X':
'typename' keyword must be followed
by a qualified name

typename X x;
^

Example Current diagnostic New diagnostic

struct C
{

C (int a): y(a), x(y) {}
int x;
int y;

};

No diagnostics warning C5038: data member 'C::y' will
be initialized after data member
'C::x'

C++ Core Check to enforce the C++ Core Guidelines
• Resource Management

• Help with low-level resource management
• Identify missing resource cleanup
• Help with smart-pointer usage

• Interfaces; Expressions and Statements
• Guide better class declarations
• Prevent use of dangerous constructs
• Catch simple but hard-to-spot mistakes

• Constants and Immutability

https://aka.ms/CppCoreCheck

Generated Code Quality: 8.9% better VS2015 -> VS2017
• Taking advantage of the new SSA-based optimizer

• Partial redundancy elimination
• Common subexpression elimination overhaul, focus on eliminating loads
• New control flow graph optimization module

• Many inliner improvements
• More aggressive and precise inline heuristic in the presence of C++ EH
• Better leveraged information of single call-site and nested loops
• Improved inlining for very small functions with and without PGO
• Better cooperation with the _restrict keyword

• Improved loop optimizations
• Significantly improved loop unswitching
• Significantly improved complete loop unrolling
• Improved conditional vectorization heuristics
• Improved speculative memset generation

• New optimizations
• SLP vectorizer & vectorization of min/max sequence reductions involving scalars
• Scalar replacement to sink stores out of loops

SPEC 2017
Benchmark

VS 2015
Update 3

VS 2017
15.5

602.gcc_s 521 443
605.mcf_s 572 546

620.omnetpp_s 402 393
623.xalancbmk_s 163 157

625.x264_s 269 204
631.deepsjeng_s 317 302

641.leela_s 450 431
657.xz_s 2247 2101

619.lbm_s 943 869
638.imagick_s 5721 4891

644.nab_s 1907 1637
508.namd_r 226 222
510.parest_r 287 280
511.povray_r 336 337
526.blender_r 278 239

Measurements in seconds
Lower is better

Build Throughput

• Building SPEC 2017 is 20% faster end-to-end

• When using /debug:fastlink, 2-4x faster
• E.g, Fable, Forza, Chrome, Bing Maps
• On by default in VS 2017, and mspdbcmf.exe

integrated as part of Visual Studio build experience

• IncrediBuild included free with VS 2017
• Generates an improved build plan which breaks down false dependencies
• Intelligent dynamic resource management (up to 8 cores with the FREE extension)

• E.g., Qt from 942 to 844 seconds
• E.g., ACE from 392 to 282 seconds

• Build visualization and diagnostic tools to find build bottlenecks

SPEC 2017
Benchmark

VS 2015
Update 3

VS 2017
15.5

602.gcc_s 145 132
605.mcf_s 2.5 2

620.omnetpp_s 85 65
623.xalancbmk_s 189 147

625.x264_s 28 24
631.deepsjeng_s 5 5

641.leela_s 11 9
657.xz_s 10 6

619.lbm_s 2 2
638.imagick_s 54 46

644.nab_s 6 6
508.namd_r 15 14
510.parest_r 205 158
511.povray_r 27 22
526.blender_r 221 189

Total buildtime: 1005.5 827
Measurements in seconds

Lower is better

AGENDA

• Microsoft Visual C++ (MSVC) Compiler and Libraries
• Conformance
• Compiler Diagnostics
• Code Analysis
• Code Gen Quality
• Build Throughput

• Visual Studio 2017
• Faster installation and your disk will thank you
• Pain-free upgrade
• Just point Visual Studio to your code
• Use Visual Studio for all your projects and target platforms
• Be more productive than ever

RTM 15.0
• Mar 2017

15.3
• Aug 2017

15.5
• Nov 2017

15.6
• ??? 201?Visual Studio 2017

https://aka.ms/vcinstaller

Pain-Free Upgrade to VS 2017

• Install VS2015 toolset with VS2017 (without needing the VS2015 IDE)

• Compiler Switches – “pay for play”
• Binary compatibility between the VS2015 and VS2017 runtimes
• Vcpkg for getting the latest version of open source libraries

Porting and Upgrading Guide: https://msdn.microsoft.com/library/dn986839.aspx

Vcpkg - Libraries Acquisition

• 80% of C++ projects use 2 or more 3rd party libs
• A majority of them use open source libraries

• Open source tool based on a port tree approach (Vcpkg)
• Usage: vcpkg install boost
• Installs the .h, .lib and binaries in a “lib folder” ready to use
• 350+ libraries in the catalog, added by 150+ contributors

https://github.com/Microsoft/vcpkg

Tuesday 8AM “Package management for C++ OSS libraries on Windows with vcpkg”

Open Folder, CMake etc

• Ideal for non-MSBuild projects
• Work with any project, e.g. CMake, make, and other C++ build systems
• Cross-platform development with MinGW and Cygwin

• Easy to get started
• devenv.exe <directory>
• “File > Open > Folder…” (Ctrl+Alt+Shift+O)

• Read, Navigate, Edit
• All C++ navigation and IntelliSense features

• Build, Debug
• Flexible integration of external build processes
• Familiar Visual Studio debugging experience

AGENDA

• Microsoft Visual C++ (MSVC) Compiler and Libraries
• Conformance
• Compiler Diagnostics
• Code Analysis
• Code Gen Quality
• Build Throughput

• Visual Studio 2017
• Faster installation and your disk will thank you
• Pain-free upgrade
• Just point Visual Studio to your code
• Use Visual Studio for all your projects and target platforms
• Be more productive than ever

Windows, Windows Store

• Universal Windows Platform (UWP)
• New way to target Win10 Desktop, Mobile, Xbox, and HoloLens from a single binary
• Accelerated OpenGLES 1, 2 and 3 support through Angle OSS library
• Large game deployments to Xbox
• C++/WinRT - a language-extension-free WinRT projection for C++

(https://github.com/Microsoft/cppwinrt)

• Bridges to Windows Store
• Desktop Bridge “Centennial” - Packaging your desktop apps in the Store
• Windows Bridge for iOS “Islandwood” (https://github.com/Microsoft/WinObjC)

• Share source code across Windows Desktop, UWP, Android, iOS, and Linux

Android and iOS

• Android
• C++ IntelliSense and debugging

• Java IntelliSense and debugging

• Support for Android Gradle build system

• Built-in support for Android API level 25
and NDK r15c in upcoming VS updates

• iOS
• Easily import (and roundtrip) your Xcode

project into Visual Studio

https://visualstudio.com/vs/cplusplus-mdd/

Linux

• Use Visual Studio with any Linux distro or Windows Subsystem for Linux (WSL)
• Remote system needs SSH, GDB, and GCC for compile
• Connect using user/password or private key
• Project templates enable control of GCC/GDB on remote target
• IntelliSense supports GCC with standard Linux libraries out of the box
• Debug from your projects or attach to remote process

• Use either gdb or gdbserver on the remote
• Python pretty printer type visualizers supported in gdb mode

• Support for CMake > 3.8 added in 15.4

• Resources
• Documentation: https://aka.ms/vslinux
• Issues, discussion: https://github.com/microsoft/vslinux

IoT – Internet of Things

• C++ for Linux Development works with IoT devices running Linux
• E.g. Raspberry Pi, Beaglebone
• Yocto SDKs can be used by overriding project defaults

• Visual Studio 2017 version 15.5 introduces ARM GCC support
• Local cross compile use ARM compiler
• mbed folder based project support
• Launch templates provided to illustrate how to debug devices

• The Azure IoT SDK supports Linux and MCU devices
• Portable to very small devices
• Provides message processing and device management capabilities
• Any device with network capability can get messages to/from Azure
• Devices without network capability can communicate through gateways
• https://azure.microsoft.com/develop/iot/

Games

• Use the cloud to build, launch, and scale out your games
• https://azure.microsoft.com/solutions/gaming/

• Built-in graphics debugger and profiler for DirectX 10, 11, 12 for diagnosing
graphics issues and performance bottlenecks

• Use Visual Studio to build cross-platform games with popular game engines
• Unity, Unreal engine, and Cocos

https://www.visualstudio.com/features/game-development-vs

AGENDA

• Microsoft Visual C++ (MSVC) Compiler and Libraries
• Conformance
• Compiler Diagnostics
• Code Analysis
• Code Gen Quality
• Build Throughput

• Visual Studio 2017
• Faster installation and your disk will thank you
• Pain-free upgrade
• Just point Visual Studio to your code
• Use Visual Studio for all your projects and target platforms
• Be more productive than ever

Productivity

• Code Editing
• Predictive IntelliSense, IntelliSense

filtering, Code formatting
enforcement with editorconfig

• Coming soon: Ctrl + Click to Go To
Definition, Structure Visualizer in-
box (download the extension in the
meantime)

• Code Navigation
• Manage a large list more easily with

Find All References (better perf
coming in 15.5)

• Navigate To -> Go To with filtering
• Improved Error List results

• Source Control Management
• Force push your changes, SSH support

for remotes, View Commit Diff

• Debugging/Diagnostics
• Run to Click, Reattach to Process,

Improved Exception Helper, Break-on-
exception conditions, Improved Memory
and CPU profiler

• Unit Testing
• Test Adapter for Google Test
• Test Adapter for Boost.Test
• …

Performance

• Auto-precompiled headers for IntelliSense perf (when no PCH)
• Memory usage during debugging significantly decreased

• E.g. debugging a specific problematic project down to 1.9G from… crashing

• Solution load dramatic improvements

Chromium - 4600
Solution Items

VS 2015
Update 3 VS 2017 Improvement

Time - First Solution Open (s) 1,213 182 6.6x
Time – Subsequent Solution Open (s) 1,211 68 17.8x
Private Working Set (MB) 2,293 804 2.8x
Virtual Memory (MB) 3,066 1,302 2.3x

You Helped Us Build It!

“Report a Problem…” tool
https://developercommunity.visualstudio.com

Visual Studio User Voice
https://visualstudio.uservoice.com/

Summary

• Visual Studio Code
• Code editor redefined, optimized for editing and debugging your C/C++ code

• MSVC - Visual C++ toolset (compiler and libs)
• The obvious choice on Windows

• Visual Studio 2017
• Fast and easy workload installation, Pain-Free Upgrade, Open Folder
• Performance you can feel
• Most productive IDE for your editing, building, debugging

• Any C++ developer, building any type of app
• No matter what platform you are targeting

• Microsoft
• We are listening and participating, tell us what you want to see next

