TestToolsTask (1.3) – Running tests without test lists
IMPORTANT NOTE: This document describes using software that has not been formally tested and is not officially supported. It is provided "AS IS" with no warranties and confers no rights. Before changing any file, create a backup.
Overview
With version 1 of Team System, users are required to specify test metadata files (.vsmdi files) when executing tests within the context of a build, which includes Team Build.

The new TestToolsTask extends the original TestToolsTask to support specifying test containers, specific tests, and test categories in addition to the test metadata files supported by the original TestToolsTask that shipped in v1. The new task is a drop-in replacement for the original v1 task, as it only adds new functionality.

When a test container (e.g., a .dll file containing unit tests, a .loadtest file containing a load test etc) is specified to be used with the new TestToolsTask, all tests in the test container will be executed. It is the equivalent of the /testcontainer switch available in the mstest.exe command line application.

When a specific test or set of tests is specified with the new TestToolsTask TestNames property, all matching test names in the test container(s) will be executed. It is the equivalent of the /test switch available in mstest.exe, except for the restriction that it requires the TestContainers property to have been set.

In the test source code, use the new Category attribute to specify test categories for your unit tests and then use the Categories property on the TestToolsTask to specify the categories you wish to be included in the run.

In order to build your test code that references the new Category attribute, you will need to specify the Microsoft.TeamFoundation.PowerTools.Tasks.QualityTools.dll as an assembly reference in your Visual Studio project (see the Setup section for the location of that file).
Setup
Prerequisite: Visual Studio Team Edition for Software Developers or Visual Studio Team Edition for Software Testers must have already been installed on the machine (e.g., build machine).

Microsoft.VisualStudio.QualityTools.MsBuildTasks.dll, which provides supports for the original v1 TestToolsTask, should already exist in the following location, including on build machines.
C:\Program Files\Microsoft Visual Studio 8\Common7\IDE\PrivateAssemblies\ Microsoft.VisualStudio.QualityTools.MsBuildTasks.dll

Copy Microsoft.TeamFoundation.PowerTools.Tasks.QualityTools.dll to the same directory.

Using the new Category attribute

IMPORTANT NOTE: The Category attribute feature will not be included in Visual Studio Codename Orcas.

The Category attribute must be specified for every test method that should be included in that test category. Note that there is no way to specify that all tests not in a test category should be run.

In order to use categories you need to:

1. Add a reference to Microsoft.VisualStudio.QualityTools.UnitTestFramework.dll in your project.

2. Add the namespace in the code:
using Microsoft.TeamFoundation.PowerTools.Tasks;

3. Add the Category attribute to the test method:
[TestMethod]
[Category("Integration")]
public void MyTestMethod()
{
 // TODO: Add test code here
}
Finally, you will either need to specify the TestCategories in TfsBuild.proj if you are using Team Build or modify your project to call the task directly.
Using the task with Team Build
IMPORTANT NOTE: Changes made to the Microsoft.TeamFoundation.Build.targets file will be overwritten when installing future releases, such as Orcas. The equivalent TestContainer and TestNames functionality will be included in Orcas, but the TestCategories functionality will not be included in Orcas (a separate Orcas version of this power tool task and targets file will be required to use TestCategories with Orcas).
Team Build supports running tests in one or more test lists in a user-specified test metadata file. To have Team Build run all tests in a test container instead, the following changes need to be made.
1. Locate Microsoft.TeamFoundation.Build.targets on the disk. It is usually found in C:\Program files\MsBuild\Microsoft\VisualStudio\v8.0\TeamBuild. Replace it with the Microsoft.TeamFoundation.Build.targets file included in the zip archive.
2. For each build type that needs to run tests in test containers, check out and edit the build type’s project file, TfsBuild.proj, located in $/<desired team project>/TeamBuildTypes/<name of build type>.
3. Locate the ItemGroup section that contains <MetaDataFile …>… </MetaDataFile> and add a new PropertyGroup section below that ItemGroup section (not inside the ItemGroup) if you wish to specify tests by name or category.

To specify particular tests by name, set the TestNames property. To specify particular test categories, specify the TestCategory property.

For example, the following specifies that all tests that contain “FileTest” in the test name that are also in either the Required or HighPriority test categories will be run.

 <PropertyGroup>
 <TestCategories>Required;HighPriority</TestCategories>
 <TestNames>FileTest</TestNames>

 </PropertyGroup>
4. Locate the section in TfsBuild.proj that contains <MetaDataFile …>… </MetaDataFile> and comment it out if it is not already commented out.
Add one or more lines similar to the following prior to the closing </ItemGroup> tag in that same ItemGroup. The result should be that the TestContainerInOutput and TestContainer elements appear where the MetaDataFile element would have been used.

Specify a relative path in TestContainerInOutput when the test container is a DLL that is located in the build output directory. The path would have used $(OutDir), but that property is not set in v1 at the time this section is evaluated during build execution (that limitation was fixed after v1 shipped). Specify a full path in TestContainer when specifying web or load test containers that are located in the build sources directory.

 <TestContainerInOutput Include="HelloWorldTest.dll" />
 <TestContainerInOutput Include="EngineTest.dll" />
 <TestContainer Include="$(SolutionRoot)\TestProject\WebTest1.webtest" />

 <TestContainer Include="$(SolutionRoot)\TestProject\LoadTest1.loadtest" />
The following line shows how to run tests in all DLLs in the build output that recursively match the file name pattern *Test.dll. Ordinarily, that would be written as ***Test.dll. Here the asterisks are escaped (%2a) to prevent file name expansion when the ItemGroup is evaluated, deferring the expansion until after the build completes.

 <TestContainerInOutput Include="%2a%2a\%2aTest.dll" />

Please note that one limitation is that if you use specify tests that are in the sources (under $(SolutionRoot)) and specify a load test or ordered test that contains unit tests, the system may have a problem locating the unit tests. This is because the system will try to locate the unit tests according to the relative paths stored in the load test / ordered test. However, those paths may not exist on the build machine. You may have to tweak the paths contained in the load test / ordered test in order to successfully run the unit tests.
Using the task directly
The following shows how you invoke the TestToolsTask directly with MSBuild using a test container.
Example:
The following code will invoke TestToolsTask when called with msbuild:
<Project DefaultTargets="RunTests" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <UsingTask TaskName="TestToolsTask" AssemblyFile="C:\Program Files\Microsoft Visual Studio 8\Common7\IDE\PrivateAssemblies\Microsoft.TeamFoundation.PowerTools.Tasks.QualityTools.dll"/>
 <Target Name="RunTests">
 <TestToolsTask SearchPathRoot="C:\Documents and Settings\myusername\My Documents\Visual Studio 2005\Projects\TestProject1" TestContainers="c:\documents and settings\myusername\my documents\visual studio 2005\projects\testproject1\bin\debug\testproject1.dll"/>
 </Target>
</Project>
Note that more than one test container can be specified: just use a semicolon to separate them. Also, if you specify the TestContainers property, you cannot also specify the MetaDataFile property. Only one of the two can be used at any one time.

