.NET 7 Preview 5 – Generic Math

Tanner Gooding [MSFT]

In .NET 6 we previewed a feature known as Generic Math. Since then, we have made continuous improvements to the implementation and responded to various feedback from the community in order to ensure that relevant scenarios are possible and the necessary APIs are available.

If you missed out on the original blog post, Generic Math combines the power of generics and a new feature known as static virtuals in interfaces to allow .NET developers to take advantage of static APIs, including operators, from generic code. This means that you get all the power of generics, but now with the ability to constrain the input to number like types, so you no longer need to write or maintain many near identical implementations just to support multiple types. It also means that you get access to all your favorite operators and can use them from generic contexts. That is, you can now have static T Add<T>(T left, T right) where T : INumber<T> => left + right; where-as previously it would have been impossible to define.

Much like generics, this feature will see the most benefits by API authors where they can simplify the amount of code required they need to maintain. The .NET Libraries did just this to simplify the Enumerable.Min and Enumerable.Max APIs exposed as part of LINQ. Other developers will benefit indirectly as the APIs they consume may start supporting more types without the requirement for each and every numeric type to get explicit support. Once an API supports INumber<T> then it should work with any type that implements the required interface. All devs will likewise benefit from having a more consistent API surface and having more functionality available by default. For example, all types that implement IBinaryInteger<T> will support operations like + (Addition), - (Subtraction), << (Left Shift), and LeadingZeroCount.

Generic Math

Lets take a look at an example piece of code that computes a standard deviation. For those unfamiliar, this is a math function used in statistics that builds on two simpler methods: Sum and Average. It is basically used to determine how spread apart a set of values are.

The first method we’ll look at is Sum, which just adds a set of values together. The method takes in an IEnumerable<T> where T must be a type that implements the INumber<T> interface. It returns a TResult with a similar constraint (it must be a type that implements INumber<TResult>). Because two generic parameters are here, it is allowed to return a different type than it takes as an input. This means, for example, you can do Sum<int, long> which would allow summing the values of an int[] and returning a 64-bit result to help avoid overflow. TResult.Zero efficiently gives the value of 0 as a TResult and TResult.CreateChecked converts value from a T into a TResult throwing an OverflowException if it is too large or too small to fit in the destination format. This means, for example, that Sum<int, byte> would throw if one of the input values was negative or greater than 255.

public static TResult Sum<T, TResult>(IEnumerable<T> values)
    where T : INumber<T>
    where TResult : INumber<TResult>
    TResult result = TResult.Zero;

    foreach (var value in values)
        result += TResult.CreateChecked(value);

    return result;

The next method is Average, which just adds a set of values together (calls Sum) and then divides that by the number of values. It doesn’t introduce any additional concepts beyond what were used in Sum. It does show use of the division operator.

public static TResult Average<T, TResult>(IEnumerable<T> values)
    where T : INumber<T>
    where TResult : INumber<TResult>
    TResult sum = Sum<T, TResult>(values);
    return TResult.CreateChecked(sum) / TResult.CreateChecked(values.Count());

StandardDeviation is the last method, as indicated above it basically determines how far apart a set of values are. For example, { 0, 50, 100 } has a high deviation of 49.501; { 0, 5, 10 } on the other hand has a much lower deviation of just 4.5092. This method introduces a different constraint of IFloatingPointIeee754 which indicates the return type must be an IEEE 754 floating-point type such as double (System.Double) or float (System.Single). It introduces a new API CreateSaturating which explicitly saturates, or clamps, the value on overflow. That is, for byte.CreateSaturating<int>(value) it would convert -1 to 0 because -1 is less than the minimum value of 0. It would likewise convert 256 to 255 because 256 is greater than the maximum value of 255. Saturation is the default behavior for IEEE 754 floating-point types as they can represent positive and negative infinity as their respective minimum and maximum values. The only other new API is Sqrt which behaves just like Math.Sqrt or MathF.Sqrt and calculates the square root of the floating-point value.

public static TResult StandardDeviation<T, TResult>(IEnumerable<T> values)
    where T : INumber<T>
    where TResult : IFloatingPointIeee754<TResult>
    TResult standardDeviation = TResult.Zero;

    if (values.Any())
        TResult average = Average<T, TResult>(values);
        TResult sum = Sum<TResult, TResult>(values.Select((value) => {
            var deviation = TResult.CreateSaturating(value) - average;
            return deviation * deviation;
        standardDeviation = TResult.Sqrt(sum / TResult.CreateSaturating(values.Count() - 1));

    return standardDeviation;

These methods can then be used with any type that implements the required interfaces and in .NET 7 preview 5 we have 20 types that implement these interfaces out of the box. The following table gives a brief description of those types, the corresponding language keyword for C# and F# when that exists, and the primary generic math interfaces they implement. More details on these interfaces and why they exist are provided later on in the Available APIs section.

.NET Type Name C# Keyword F# Keyword Implemented Generic Math Interfaces
System.Byte byte byte IBinaryInteger, IMinMaxValue, IUnsignedNumber
System.Char char char IBinaryInteger, IMinMaxValue, IUnsignedNumber
System.Decimal decimal decimal IFloatingPoint, IMinMaxValue
System.Double double float, double IBinaryFloatingPointIeee754, IMinMaxValue
System.Half IBinaryFloatingPointIeee754, IMinMaxValue
System.Int16 short int16 IBinaryInteger, IMinMaxValue, ISignedNumber
System.Int32 int int IBinaryInteger, IMinMaxValue, ISignedNumber
System.Int64 long int64 IBinaryInteger, IMinMaxValue, ISignedNumber
System.Int128 IBinaryInteger, IMinMaxValue, ISignedNumber
System.IntPtr nint nativeint IBinaryInteger, IMinMaxValue, ISignedNumber
System.Numerics.BigInteger IBinaryInteger, IUnsignedNumber
System.Numerics.Complex INumberBase, ISignedNumber
System.Runtime.InteropServices.NFloat IBinaryFloatingPointIeee754, IMinMaxValue
System.SByte sbyte sbyte IBinaryInteger, IMinMaxValue, ISignedNumber
System.Single float float32, single IBinaryFloatingPointIeee754, IMinMaxValue
System.UInt16 ushort uint16 IBinaryInteger, IMinMaxValue, IUnsignedNumber
System.UInt32 uint uint IBinaryInteger, IMinMaxValue, IUnsignedNumber
System.UInt64 ulong uint64 IBinaryInteger, IMinMaxValue, IUnsignedNumber
System.UInt128 IBinaryInteger, IMinMaxValue, IUnsignedNumber
System.UIntPtr nuint unativeint IBinaryInteger, IMinMaxValue, IUnsignedNumber

This means that out of the box users get a broad set of support for Generic Math. As the community adopts these interfaces for their own types, the support will continue to grow.

Types Without Language Support

Readers might note that there are a few types here that don’t have an entry in the C# Keyword or F# Keyword column. While these types exist and are supported fully in the BCL, languages like C# and F# do not provide any additional support for them today and so users may surprised when certain language features do not work with them. Some examples are that the language won’t provide support for literals (Int128 value = 0xF_FFFF_FFFF_FFFF_FFFF isn’t valid), constants (const Int128 Value = 0; isn’t valid), constant folding (Int128 value = 5; is evaluated at runtime, not at compile time), or various other functionality that is limited to types that have corresponding language keywords.

The types without language support are:

  • System.Half is a 16-bit binary floating-point type that implements the IEEE 754 standard much like System.Double and System.Single. It was originally introduced in .NET 5
  • System.Numerics.BigInteger is an arbitrary precision integer type and automatically grows to fit the value represented. It was originally introduced in .NET Framework 4.0
  • System.Numerics.Complex can represent the expression a + bi where a and b are System.Double and i is the imaginary unit. It was originally introduced in .NET Framework 4.0
  • System.Runtime.InteropServices.NFloat is a variable precision binary floating-point type that implements the IEEE 754 standard and much like System.IntPtr it is 32-bits on a 32-bit platform (equivalent to System.Single) and 64-bits on a 64-bit platform (equivalent to System.Double) It was originally introduced in .NET 6 and is primarily meant for interop purposes.
  • System.Int128 is a 128-bit signed integer type. It is new in .NET 7
  • System.UInt128 is a 128-bit unsigned integer type. It is new in .NET 7

Breaking Changes Since .NET 6

The feature that went out in .NET 6 was a preview and as such there have been several changes to the API surface based on community feedback. This includes, but is not limited to:

  • Renaming System.IParseable to System.IParsable
  • Moving all other new numeric interfaces to the System.Numerics namespace
  • Introducing INumberBase so that types like System.Numerics.Complex can be represented
  • Splitting the IEEE 754 specific APIs into their own IFloatingPointIeee754 interface so types like System.Decimal can be represented
  • Moving various APIs lower in the type hierarchy such as the IsNaN or MaxNumber APIs
    • Many of the concepts will return a constant value or be a no-op on various type
    • Despite this, it is still important that they’re available, since the exact type of a generic is unknown and many of these concepts are important for more general algorithms

.NET API reviews are done in the open and are livestreamed for all to view and participate in. Past API review videos can be found on our YouTube channel.

The design doc for the Generic Math feature is available in the dotnet/designs repo on GitHub.

The corresponding PRs updating the document, general discussions around the feature, and links back to the relevant API reviews are also available.

Support in other languages

F# is getting support for static virtuals in interfaces as well and more details should be expected soon in the fsharp/fslang-design repo on GitHub.

A fairly 1-to-1 translation of the C# Sum method using the proposed F# syntax is expected to be:

let Sum<'T, 'TResult when 'T :> INumber<'T> and 'TResult :> INumber<'TResult>>(values : IEnumerable<'T>) =
    let mutable result = 'TResult.Zero
    for value in values do
        result <- result 'TResult.CreateChecked(value)

Available APIs

Numbers and math are both fairly complex topics and the depth in which one can go is almost without limit. In programming there is often only a loose mapping to the math one may have learned in school and special rules or considerations may exist since execution happens in a system with limited resources. Languages therefore expose many operations that make sense only in the context of certain kinds of numbers or which exist primarily as a performance optimization due to how hardware actually works. The types they expose often have well-defined limits, an explicit layout of the data they are represented by, differing behaviors around rounding or conversions, and more.

Because of this there remains a need to both support numbers in the abstract sense while also still supporting programming specific constructs such as floating-point vs integer, overflow, unrepresentable results; and so it was important as part of designing this feature that the interfaces exposed be both fine-grained enough that users could define their own interfaces built on top while also being granular enough that they were easy to consume. To that extent, there are a few core numeric interfaces that most users will interact with such as System.Numerics.INumber and System.Numerics.IBinaryInteger; there are then many more interfaces that support these types and support developers defining their own numeric interfaces for their domain such as IAdditionOperators and ITrigonometricFunctions.

Which interfaces get used will be dependent on the needs of the declaring API and what functionality it relies on. There are a range of powerful APIs exposed to help users efficiently understand the value they’ve been and decide the appropriate way to work with it including handling edge cases (such as negatives, NaNs, infinities, or imaginary values), having correct conversions (including throwing, saturating, or truncating on overflow), and being extensible enough to version the interfaces moving forward by utilizing Default Interface Methods.

Numeric Interfaces

The types most users will interact with are the numeric interfaces. These define the core interfaces describing number-like types and the functionality available to them.

Interface Name Summary
System.Numerics.IAdditiveIdentity Exposes the concept of (x + T.AdditiveIdentity) == x
System.Numerics.IMinMaxValue Exposes the concept of T.MinValue and T.MaxValue (types like BigInteger have no Min/MaxValue)
System.Numerics.IMultiplicativeIdentity Exposes the concept of (x * T.MultiplicativeIdentity) == x
System.Numerics.IBinaryFloatingPointIeee754 Exposes APIs common to binary floating-point types that implement the IEEE 754 standard
System.Numerics.IBinaryInteger Exposes APIs common to binary integers
System.Numerics.IBinaryNumber Exposes APIs common to binary numbers
System.Numerics.IFloatingPoint Exposes APIs common to floating-point types
System.Numerics.IFloatingPointIeee754 Exposes APIs common to floating-point types that implement the IEEE 754 standard
System.Numerics.INumber Exposes APIs common to comparable number types (effectively the “Real” number domain)
System.Numerics.INumberBase Exposes APIs common to all number types (effectively the “Complex” number domain)
System.Numerics.ISignedNumber Exposes APIs common to all signed number types (such as the concept of NegativeOne)
System.Numerics.IUnsignedNumber Exposes APIs common to all unsigned number types

While there are a few different types here, most users will likely work directly with INumber<TSelf>. This roughly corresponds to what some users may recognize as a “real” number and means the value has a sign and well-defined order, making it IComparable. INumberBase<TSelf> convers more advanced concepts including “complex” and “imaginary” numbers.

Most of the other interfaces, such as IBinaryNumber, IFloatingPoint, and IBinaryInteger, exist because not all operations make sense for all numbers. That is, there are places where APIs only makes sense for values that are known to be binary-based and other places where APIs only make sense for floating-point types. The IAdditiveIdentity, IMinMaxValue, and IMultiplicativeIdentity interfaces exist to cover core properties of number like types. For IMinMaxValue in particular, it exists to allow access to the upper (MaxValue) and lower (MinValue) bounds of a type. Certain types like System.Numerics.BigInteger may not have such bounds and therefore do not implement this interface.

IFloatingPoint<TSelf> exists to cover both IEEE 754 types such as System.Double, System.Half, and System.Single as well as other types such as System.Decimal. The number of APIs provided by it is much lesser and it is expected most users who explicitly need a floating-point-like type will use IFloatingPointIeee754. There is not currently any interface to describe “fixed-point” types but such a definition could exist in the future if there is enough demand.

These interfaces expose APIs previously only available in System.Math, System.MathF, and System.Numerics.BitOperations. This means that functions like T.Sqrt(value) are now available to anything implementing IFloatingPointIeee754<T> (or more specifically the IRootFunctions<T> interface covered below).

Some of the core APIs exposed by each interface includes, but is not limited to the below.

Interface Name API Name Summary
IBinaryInteger DivRem Computes the quotient and remainder simultaneously
LeadingZeroCount Counts the number of leading zero bits in the binary representation
PopCount Counts the number of set bits in the binary representation
RotateLeft Rotates bits left, sometimes also called a circular left shift
RotateRight Rotates bits right, sometimes also called a circular right shift
TrailingZeroCount Counts the number of trailing zero bits in the binary representation
IFloatingPoint Ceiling Rounds the value towards positive infinity. +4.5 becomes +5, -4.5 becomes -4
Floor Rounds the value towards negative infinity. +4.5 becomes +4, -4.5 becomes -5
Round Rounds the value using the specified rounding mode.
Truncate Rounds the value towards zero. +4.5 becomes +4, -4.5 becomes -4
IFloatingPointIeee754 E Gets a value representing Euler’s number for the type
Epsilon Gets the smallest representable value that is greater than zero for the type
NaN Gets a value representing NaN for the type
NegativeInfinity Gets a value representing -Infinity for the type
NegativeZero Gets a value representing -Zero for the type
Pi Gets a value representing +Pi for the type
PositiveInfinity Gets a value representing +Infinity for the type
Tau Gets a value representing +Tau, or 2 * Pi for the type
–Other– –Implements the full set of interfaces defined under Functions below–
INumber Clamp Restricts a value to no more and no less than the specified min and max value
CopySign Sets the sign of a give value to the same as another specified value
Max Returns the greater of two values, returning NaN if either input is NaN
MaxNumber Returns the greater of two values, returning the number if one input is NaN
Min Returns the lesser of two values, returning NaN if either input is NaN
MinNumber Returns the lesser of two values, returning the number if one input is NaN
Sign Returns -1 for negative values, 0 for zero, and +1 for positive values
INumberBase One Gets the value 1 for the type
Radix Gets the radix, or base, for the type. Int32 returns 2. Decimal returns 10
Zero Gets the value 0 for the type
CreateChecked Creates a value from another value, throwing if the other value can’t be represented
CreateSaturating Creates a value from another value, saturating if the other value can’t be represented
CreateTruncating Creates a value from another value, truncating if the other value can’t be represented
IsComplexNumber Returns true if the value has a non-zero real part and a non-zero imaginary part
IsEvenInteger Returns true if the value is an even integer. 2.0 returns true, 2.2 returns false
IsFinite Returns true if the value is not infinite and not NaN.
IsImaginaryNumber Returns true if the value has a zero real part. This means 0 is imaginary and 1 + 1i is not
IsInfinity Returns true if the value represents infinity.
IsInteger Returns true if the value is an integer. 2.0 and 3.0 return true, 2.2 and 3.1 return false
IsNaN Returns true if the value represents NaN
IsNegative Returns true if the value is negative, this includes -0.0
IsPositive Returns true if the value is positive, this includes 0 and +0.0
IsRealNumber Returns true if the value has a zero imaginary part. This means 0 is real as are all INumber<T> types
IsZero Returns true if the value represents zero, this includes 0, +0.0, and -0.0
MaxMagnitude Returns the value with a greater absolute value, returning NaN if either input is NaN
MaxMagnitudeNumber Returns the value with a greater absolute value, returning the number if one input is NaN
MinMagnitude Returns the value with a lesser absolute value, returning NaN if either input is NaN
MinMagnitudeNumber Returns the value with a lesser absolute value, returning the number if one input is NaN
ISignedNumber NegativeOne Gets the value -1 for the type


The function interfaces define common mathematical APIs that may be more broadly applicable than to a specific numeric interface. They are currently all implemented by IFloatingPointIeee754 and may also get implemented by other relevant types in the future.

Interface Name Summary
System.Numerics.IExponentialFunctions Exposes exponential functions supporting e^x, e^x - 1, 2^x, 2^x - 1, 10^x, and 10^x - 1
System.Numerics.IHyperbolicFunctions Exposes hyperbolic functions supporting acosh(x), asinh(x), atanh(x), cosh(x), sinh(x), and tanh(x)
System.Numerics.ILogarithmicFunctions Exposes logarithmic functions supporting ln(x), ln(x + 1), log2(x), log2(x + 1), log10(x), and log10(x + 1)
System.Numerics.IPowerFunctions Exposes power functions supporting x^y
System.Numerics.IRootFunctions Exposes root functions supporting cbrt(x) and sqrt(x)
System.Numerics.ITrigonometricFunctions Exposes trigonometric functions supporting acos(x), asin(x), atan(x), cos(x), sin(x), and tan(x)

Parsing and Formatting

Parsing and formatting are core concepts in programming. They are typically used to support converting user input to a given type or to display a given type to the user.

Interface Name Summary
System.IFormattable Exposes support for value.ToString(string, IFormatProvider)
System.ISpanFormattable Exposes support for value.TryFormat(Span<char>, out int, ReadOnlySpan<char>, IFormatProvider)
System.IParsable Exposes support for T.Parse(string, IFormatProvider)
System.ISpanParsable Exposes support for T.Parse(ReadOnlySpan<char>, IFormatProvider)


Central to Generic Math is the ability to expose operators as part of an interface. .NET 7 provides the following interfaces which expose the core operators supported by most languages. This also includes new functionality in the form of user-defined checked operators and unsigned right shift.

Interface Name Summary
System.Numerics.IAdditionOperators Exposes the x + y and checked(x + y) operators
System.Numerics.IBitwiseOperators Exposes the x & y, x | y, x ^ y, and ~x operators
System.Numerics.IComparisonOperators Exposes the x < y, X > y, x <= y, and x >= y operators
System.Numerics.IDecrementOperators Exposes the --x, checked(--x), x--, and checked(x--) operators
System.Numerics.IDivisionOperators Exposes the x / y and checked(x / y) operators
System.Numerics.IEqualityOperators Exposes the x == y and x != y operators
System.Numerics.IIncrementOperators Exposes the ++x, checked(++x), x++, and checked(x++) operators
System.Numerics.IModulusOperators Exposes the x % y operator
System.Numerics.IMultiplyOperators Exposes the x * y and checked(x * y) operators
System.Numerics.IShiftOperators Exposes the x << y, x >> y, and x >>> y operators
System.Numerics.ISubtractionOperators Exposes the x - y and checked(x - y) operators
System.Numerics.IUnaryNegationOperators Exposes the -x and checked(-x) operators
System.Numerics.IUnaryPlusOperators Exposes the +x operator

User-Defined Checked Operators

User-defined checked operators allow a different implementation to be provided which will throw System.OverflowException rather than silently truncating their result. These alternative implementations are available to C# code by using the checked keyword or setting <CheckForOverflowUnderflow>true</CheckForOverflowUnderflow> in your project settings. The versions that truncate are available by using the unchecked keyword or ensuring CheckForOverflowUnderflow is false (this is the default experience for new projects).

Some types, such as floating-point types, may not have differing behavior as they saturate to PositiveInfinity and NegativeInfinity rather than truncating. BigInteger is another type that does not have differing behavior between the unchecked and checked versions of the operators as the type simply grows to fit the value. 3rd party types may also have their own unique behavior.

Developers can declare their own user-defined checked operators by placing the checked keyword after the operator keyword. For example, public static Int128 operator checked +(Int128 left, Int128 right) declares a checked addition operator and public static explicit operator checked int(Int128 value) declares a checked explicit conversion operator.

Unsigned Right Shift

Unsigned right shift (>>>) allows shifting to occur that doesn’t carry the sign. That is, for -8 >> 2 the result is -2 while -8 >>> 2 is +1073741822.

This is somewhat easier to visualize when looking at the hexadecimal or binary representation. For x >> y the sign of the value is preserved and so for positive values 0 is shifted in while for negative values 1 is shifted in instead. However, for x >>> y the sign of the value is ignored and 0 is always shifted in. This is similar to first casting the value to an unsigned type of the same sign and then doing the shift, that is it is similar to (int)((uint)x >> y) for int.

Expression Decimal Hexadecimal Binary
-8 -8 0xFFFF_FFF8 0b1111_1111_1111_1111_1111_1111_1111_1000
-8 >> 2 -2 0xFFFF_FFFE 0b1111_1111_1111_1111_1111_1111_1111_1110
-8 >>> 2 +1,073,741,822 0x3FFF_FFFE 0b0011_1111_1111_1111_1111_1111_1111_1110


The amount of functionality now available in a generic context is quite large, allowing your code to be simpler, more maintainable, and more expressive. Generic Math will empower every developer to achieve more, and we are excited to see how you decide to utilize it!


Comments are closed. Login to edit/delete your existing comments

  • Johan Visser 0

    Too bad preview 5 is not (yet) available for download.

  • Ian Marteens 0

    It will be great for libraries like MathDotNet or AlgLib. Too much duplicated code, right now, and many contrived techniques to support all required types. It’s a big step forward!

  • Джангир 0

    Wait a minute…

    public static TResult Average(IEnumerable values)
        where T : INumber
        where TResult : INumber
        TResult sum = Sum(values);
        return TResult.CreateChecked(sum) / TResult.CreateChecked(values.Count());

    If T and TResult are integers, sum / count will give integer value, isn’t it? It’s not what would be expected for avg of [3, 4].

    P.S. Sorry, some code parts were “eaten”

    • Tanner Gooding Microsoft employee 0

      Right. But that’s just how integers work and sometimes that’s appropriate.

      For integers, Division is generally a lossy operation and so a dev can decide if that’s ok for them or not. In the case of StandardDeviation, we need Sqrt which is only available to floating-point values and so the Average it calls will likewise return a floating-point result, even if the inputs are integers.

      One could also restrict TResult : IFloatingPoint<TResult> (same goes for T or any other constraint) if that was more appropriate for their library.

  • Andrew Witte 0

    Why would you write any kind of number crunchy math library that virtualizes ever single operation?
    Holy performance Batman!

  • Nathan Ferreira 0

    Cannot use triple shift operator, compiler report invalid syntax. Even using langversion preview + enable preview features + experimental package………..

    screenshot: https://i.imgur.com/j8E8q97.png
    csproj: https://i.imgur.com/oSxlFLt.png

    Unable to build.

    • Tanner Gooding Microsoft employee 0

      You’ll need at least .NET 7 Preview 4 to have access to unsigned right shift and user-defined checked operators.

      For .NET 7 Preview 3 and later, you no longer need the System.Runtime.Experimental package as the relevant bits are now in-box and available by default.

      Many of the changes discussed in the blog post here are in .NET 7 Preview 4, a few of them are only available on .NET 7 Preview 5 which isn’t quite out yet. — For reference, this blog post got moved up to align with the .NET Community Standup stream covering Generic Math (https://dotnet.microsoft.com/en-us/live/community-standup). .NET 7 Preview 5 will be out “soon”.

      Provided you have at least .NET 7 Preview 4, unsigned right shift(this also applies to `user-defined checked operators` and the `Generic Math` feature more generally) can be utilized simply via:

      <Project Sdk="Microsoft.NET.Sdk">

      and then for the Program.cs:

      // See https://aka.ms/new-console-template for more information
      int x = -1;
      x >>>= 5;
  • Anthony Francis Steiner Vazquez 0

    I have to agree that the need of a BigDecimal is something that should be on the radar, but I love the addition of uint128 and int128. To be honest .NET 7 is looking great, lots of great additions along with C#11. I’m exited to see all of this when the next LTS arrives and all the new stuff that will come with it!

  • AlseinX 0

    Is implicit `TSelf` (like in rust) yet possible?
    T: INumber<T> semantically makes no sense, and is logically improper.

    • Tanner Gooding Microsoft employee 0

      The language doesn’t currently have any support for a self type. It is something that might be considered in the future and they will consider if it can be done in a way that can be extended to existing types (like INumber<T>) in a binary compatible way. There is no guarantee that will happen, however, and it may require entirely new/incompatible representation.

      semantically makes no sense, and is logically improper.

      where T : SomeType<T> is actually a very common and well-defined pattern throughout programming. It’s known as the “Curiously Recurring Template Pattern” (CRTP) and it even has an in depth wiki page covering it. CRTP simply means that the parameter T must implement the interface SomeType<T> and therefore means struct Int32 : INumber<Int32> is valid, but struct Int32 : INumber<Guid> is not.

      It’s worth noting there is a a small “hole” with CRTP in that this means that struct Int32 : INumber<Int64> would be technically valid to declare since Int64 implements INumber<Int64>. However, you shouldn’t do this since it will run into downstream usability issues in practice. You should always ensure the generic type matches the implementing type.

      Likewise since it isn’t a proper self-type, TSelf x = this and others syntax that would require a proper self constraint aren’t valid. This isn’t going to be hugely restrictive but it will impact some scenarios more than others.

  • Rand Random 0

    Maybe I am missing something but I believed this could would be possible:

    static T GetValue(T tValue)
        if (tValue is INumber number)
            tValue = (T)number.Abs();
        return tValue;

    Instead of:

    static T GetBoringValue(T tValue)
        tValue = tValue switch
            short v => (T)(object)Math.Abs(v),
            int v => (T)(object)Math.Abs(v),
            long v => (T)(object)Math.Abs(v),
            decimal v => (T)(object)Math.Abs(v),
            float v => (T)(object)Math.Abs(v),
            double v => (T)(object)Math.Abs(v),
            _ => tValue,
        return tValue;
    • Tanner Gooding Microsoft employee 0

      Abs is a static method and so it is only accessible as T.Abs(tValue) and only when T is appropriately constrained (where T : INumber<T>).

      Not being able to do something like if (tValue is INumber<T>) and then have access to the static members on T is a known scenario that doesn’t work and is due to both time constraints and there not being existing support for such a scenario in the runtime. Basically, there is no way to bridge generic constraints here and so you can’t go from something that is just T to calling something that is where T : unmanaged for example.

      This is a scenario that will be looked at more in the future so that it can be handled appropriately.

      For the time being, you’ll have to do something like:

      static T GetValue(T tValue)
          where T : INumber<T>
          return T.Abs(tValue);
  • Monteiro Manuel 0

    Hi, where can i find c# 10 documentation like classes and member function, i want to learn to program in c# and i need to know the existing classes.

  • Christian Ohle 0

    The new INumber-based interfaces are great. I tested this from both sides.

    But I want to suggest some improvements – before it is to late.

    The INumberBase function set should be improved.
    The set of 17 Is... functions, IsCanonical(TSelf)IsZero(TSelf) sould be one function like:
    NumberInfoFlags GetNumberInfo(TSelf, NumberInfoFlags mask)
    * Easy extensible and compatible for future use by simply extend enum NumberInfoFlags and not by extend the interface.
    * Faster and easier to get the necessary information in templates with one hit to select the best possible alg. based on the flags.
    * More type specific without more code, for all thinkable types like arbitrary, rational, vectors etc. where more infos is needed.
    * Less code, more easy to implement on number side as the most flags are const and for others, using the mask param, to bypass unrequested, unnecessary calculations.
    * INumberBase<TSelf>.Radix should be integrated here, as this can also be dynamic (and it’s always annoying to see this obvious information in debug) and what is Radix for rational?
    * Better for inline in most cases. And, for any reason it works better with inline that way (runtime/issues/68890) what I tested on X64.

    The same applies to the functions Create...<TOther>(TOther), TryConvert...<TOther>(TOther), TryConvertFrom...<TOther>(TOther)
    * should be one function with enum parameter for the same reasons.
    * I’ve seen in other implementations, I’ve done this in mine, on the number side a mapping to such a private general function(s) and it wouldn’t be necessary that way.

    For the statics TSelf One, TSelf Zero, There should be a function like: TSlef GetConst(NumberConst)
    * easy extendable by extend enum NumberConst
    * can contain MinValue, MaxValue, Epsilon, etc.
    * can contain the best type specific representation for Pi, E, Tau etc. which is really importand for alg’s. as template.
    * can contain the props AdditiveIdentity, MultiplicativeIdentity, etc. and would make approriated interfaces IAdditiveIdentity, IMultiplicativeIdentity obsolete.
    * The jump table in implementations really isn’t the problem and since everything is constant the compiler in release can inline this perfectly.

    The ..Magnitude functions should be moved in another interface.
    The ..TryFormat functions should be moved in another interface.

    Also for the other interfaces. They could all be improved upon and benefit from this approach by using enum parameters for capability checks and then only one static method is required for each method body type, unary, binary etc.

    Consistently thought: the entire current INumber interface set could be implemented in one interface and everything would be more flexible, more type-specific, extensible for the future, less code, easier to read, better inline, more performance.

    But yes, it is also nice to see the always same normed function names for similar types and to force this by the interfaces.

Feedback usabilla icon