

Matt Sandy
Program Manager

DirectX

DirectX Raytracing

• Why Raytracing?

• DXR Deep Dive

• Tools & Helpers

• Applied Raytracing (EA/SEED)

• Get Started

Agenda

• Solving the Visibility Problem

3D Graphics is a Lie

• Dynamic Shadows

• Environment Mapping

• Reflections

• Global Illumination

Emergence of Exceptions

• 1999 – Hardware T&L

• 2000 – Simple Programmable Shaders

• 2002 – Complex Programmable Shaders

• 2008 – Compute Shaders

• 2014 – Asynchronous Compute

• 2018…

A Brief History of Pixels

• 1999 – Hardware T&L

• 2000 – Simple Programmable Shaders

• 2002 – Complex Programmable Shaders

• 2008 – Compute Shaders

• 2014 – Asynchronous Compute

• 2018 – DirectX Raytracing

A Brief History of Pixels

1. Construct a 3D representation of a scene.

2. Trace rays into the scene from a point of interest (e.g. camera).

3. Accumulate data about ray intersections.

4. Optional: go to step 2.

5. Process the accumulated data to form an image.

Raytracing 101

⁛ ⁛ ⁛ ⁛

⁛ ⁛ ⁛ ⁛

⁛ ⁛ ⁛ ⁛

⁛ ⁛ ⁛ ⁛

DXR 101

Case Study: SSR

DXR 101

Case Study: SSR

Raytracing Requirements
• Scene geometry representation

• Trace rays into scene and get intersections

• Determine and execute material shaders

Raytracing Requirements
• Scene geometry representation

• Trace rays into scene and get intersections

• Determine and execute material shaders

Acceleration Structures
• Opaque buffers that represent a scene

• Constructed on the GPU

• Two-level hierarchy [M] [M] [M] [M]

• Triangles

• Vertex Buffer (float16x3 or float32x3)

• Index Buffer (uint16 or uint32)

• Transformation matrix

• Programmable Geometry

• Defined using shader code

• Specify enclosing AABBs

Geometries

• Defined by a set of geometries

• Built on the GPU, written to opaque buffer

Bottom-Level Acceleration Structure

• Defined by a set of instances of bottom-level structures

• Built on the GPU, written to opaque buffer

• Transformation matrix for each instance

Top-Level Acceleration Structures

[M][M][M]

• Prebuild info

• Query driver for allocation requirements

• Returns conservative result and scratch sizes required

• Postbuild info available

• Query compacted size for reallocation

• Updates supported

• Incrementally update top/bottom level structs

• Can do async full rebuild when drifting too far

Acceleration Structure Details

Acceleration Structure Recap

[M] [M] [M] [M]

Raytracing Requirements
• Scene geometry representation

• Trace rays into scene and get intersections

• Determine and execute material shaders

Raytracing Requirements
• Scene geometry representation

• Trace rays into scene and get intersections

• Determine and execute material shaders

Ray Generation Shader
• Invoked via CommandList::DispatchRays()

• Specify 2D grid of threads

• Emit any number of rays per thread

• Use TraceRay intrinsic

• Write traversal results to UAVs

TraceRay Intrinsic
• Origin

• Direction

• TMin/TMax

• App-defined “payload”

Determining Intersections
• Triangle Geometry

• Determination: Automatic

• Attributes: Barycentrics

• Programmable Geometry

• Determination: Intersection Shaders

• Attributes: Application-defined

• Everything new requires the DXIL compiler

✔ dxc.exe / dxcompiler.dll

❌ fxc.exe / d3dcompiler_47.dll

• Get it here: http://aka.ms/HLSL

• For DXR, use the pre-built binary in the experimental SDK

DXC / DXIL

http://aka.ms/HLSL

Raytracing Requirements
• Scene geometry representation

• Trace rays into scene and get intersections

• Determine and execute material shaders

Raytracing Requirements
• Scene geometry representation

• Trace rays into scene and get intersections

• Determine and execute material shaders

• Invoked at geometry intersection points

• Access to intersection attributes (tri: barycentrics)

• Read/write access to app-defined ray payload

• Call TraceRay() for recursive traversal

Hit Shaders

• Invoked for all intersections along ray path

• Read attributes, modify ray payload for subsequent hit shaders

• May call IgnoreHit() / AcceptHitAndEndSearch()

Any-Hit Shaders

• Invoked for closest accepted intersection along ray path

• Read attributes, modify ray payload for TraceRay() caller

Closest-Hit Shaders

• Invoked for closest accepted intersections along ray path

• Read attributes, modify ray payload for TraceRay() caller

• Trace more rays

Closest-Hit Shaders

• Invoked for rays with no accepted hits through TMax

• May trace more rays (e.g. into lower-LOD acceleration structure)

• Return transparent-black, sample skybox, etc.

Miss Shader

• Rays can intersect any geometry, need any shader, any resource

• Bindless resources (arbitrarily indexable table)

• Bindless shaders

Which Shaders to Run?

✔

?

• Rays can intersect any geometry, need any shader, any resource

• Bindless resources (arbitrarily indexable table)

• Bindless shaders: shader tables

Which Shaders to Run?

✔

✔

• GPU buffer of “shader records”

• Shader ID

• Root arguments

• Flexible indexing in DXR

• Instance properties

• DispatchRays arguments

• TraceRay arguments

• Shader IDs acquired from “state objects”

Shader Tables

Shader A

Root CBV M

Descriptor Table X

Shader B

Root CBV N

Descriptor Table Y

…

• Set of shaders and root signatures

• Associate root signatures with DXIL library exports

• Create pipeline-specific sub-objects and associations

• Flexibility to support future pipelines

• State Object Properties interface for post-compile information

State Objects (PSOs v2)

• Configure maximum ray recursion depth

• Configure ray payload and attribute size

• Create “hit groups” from individual shaders

• 0/1 intersection shader

• 0/1 any-hit shader

• 0/1 closest-hit shader

• Use state object properties interface to get:

• Ray generation shader IDs

• Miss shader IDs

• Hit group IDs

Raytracing State Objects

Raytracing Requirements
• Scene geometry representation

• Trace rays into scene and get intersections

• Determine and execute material shaders

• Create state objects with set of potential material shaders

• Create top/bottom level acceleration structures

• Create shader tables with hit groups / root parameters

• Call DispatchRays

• Invoke ray-generation shader, call TraceRay()

• Execute hit shaders, write results into a UAV

• Incorporate UAV results into final scene render

Putting it All Together

• PIX support available now

• See also: Direct3D Graphics Debugging and Optimization

• Thursday 12:45 PM, Room 2009, West Hall (this room)

• Fallback layer

• Open-source reference implementation

• Compute shader based (requires DXIL support)

• VS/PS Hit Group conversion

• Reuse existing shader content

• Raytracing helper header

• Very useful for building state objects

Tools

State Object Trees

State Object Trees

Shader Tables

State Object Trees

Shader Tables

Acceleration Structure Visualization

DirectX: Evolving Microsoft's Graphics Platform

Johan Andersson & Colin Barré-Brisebois
Electronic Arts

Video

S E E D // DirectX: Evolving Microsoft's Graphics Platform

“PICA PICA”
Exploratory mini-game & world

▪ For our self-learning AI agents to play, not for
humans ☺

▪ Uses SEED’s Halcyon R&D engine

▪ Goals

▪ Explore hybrid raytracing with DXR

▪ Clean and consistent visuals

▪ Procedurally-generated worlds

▪ No precomputation

S E E D // DirectX: Evolving Microsoft's Graphics Platform

Why raytracing?

▪ Flexible new tool in the toolbox

▪ Solve sparse & incoherent problems

▪ Unified API + performance (DXR + RTX)

▪ Simple high quality - easy ground truth

S E E D // DirectX: Evolving Microsoft's Graphics Platform

Hybrid Rendering Pipeline

Direct shadows
(raytrace or raster)

Direct lighting (compute) Reflections (raytrace)Deferred shading (raster)

Global Illumination (raytrace) Post processing (compute)Transparency & Translucency
(raytrace)

Ambient occlusion
(raytrace or compute)

S E E D // DirectX: Evolving Microsoft's Graphics Platform

Live demo

S E E D // DirectX: Evolving Microsoft's Graphics Platform

?
▪ Spawn a Mesh?

▪ DXR: build its bottom acceleration structure

▪ Multiple geometries for multiple materials

▪ Triangles, AABBs, custom

▪ Mesh instances specified in top acceleration

▪ Move a Mesh?

▪ Update the instance’s position/orientation in the

top acceleration

▪ Spawn [some] Rays?

▪ Multiple Hit and Miss shaders possible

Mesh 1 Mesh 2 Mesh 3

Bottom Acceleration

Inst. 1 Inst. 2 Inst. 3 Inst. 4 Inst. 5

Top Acceleration

Shader Table

R R R R M M
…… …

H H H H H H H H H H H H H H H

S E E D // DirectX: Evolving Microsoft's Graphics Platform

Raytraced Reflections
▪ Rasterize primary visibility

▪ Launch rays from the G-Buffer

▪ Raytrace at half resolution

▪ Reconstruct at full resolution

▪ Spatiotemporal filtering

▪ Works on both flat and curved surfaces

Raytraced Reflections

S E E D // DirectX: Evolving Microsoft's Graphics Platform

Reflection Rays
Let’s launch some reflection rays:

1. Select one of the (2x2) pixels to trace

2. Reconstruct position and vectors

3. Initialize Halton & random number seq.

4. Initialize the payload

5. Prepare a new ray

6. Trace

7. Gather results from ray payload

▪ Reflection Color, Direction, HitT, 1/pdf

Reflections Raytracing HLSL Pseudo-Code

1

2

3

4

5

6

7

S E E D // DirectX: Evolving Microsoft's Graphics Platform

Reflection Filtering
Inspired by Stochastic Screen-Space Reflections [Stachowiak 2015]

▪ For every full-res pixel, sample 16 pixels in half-res ray results

▪ Blue Noise offsets, decorrelated every 2x2 pixels

▪ Build color bounding box of ray-hit results

▪ Clamp temporal history to bounding box

▪ Followed by a variance-driven bilateral filter

▪ Helps with rough reflections

Unfiltered (Top) and Filtered (Bottom) Results

S E E D // DirectX: Evolving Microsoft's Graphics Platform

Screen-Space Reflections G-Buffer Raytraced Path Tracing Reference

Screen-Space Reflections G-Buffer Raytraced Path Tracing Reference

Ambient Occlusion
Ambient Occlusion (AO) [Langer 1994] [Miller 1994] maps and scales directly
with real-time ray tracing:

▪ Integral of the visibility function over the hemisphere Ω for the point p

on a surface with normal ොn with respect to the projected solid angle

▪ Games often approximate this in screen-space

▪ With RT, more grounded & improves visual fidelity!

▪ Random directions ෝw

▪ Can be temporally accumulated or denoised

S E E D // DirectX: Evolving Microsoft's Graphics Platform

ො𝑛

𝑝

𝐴𝑝 =
1

𝜋
න
Ω

𝑉𝑝, ෝ𝑤(ො𝑛 ⋅ ෝ𝑤)𝑑𝜔

Screen-Space AO

Raytraced AO

Screen-Space AO

Raytraced AO
(Same Radius as SSAO)

Raytraced AO
(Far-field)

mGPU

Ray

Generation

Copy Sub Regions

Copy Sub Regions

GPU1 GPU2 GPU3 GPU4
Explicit Heterogenous Multi-GPU

▪ Parallel Fork-Join Style

▪ Resources copied through system memory using copy

queue

▪ Minimize PCI-E transfers

▪ Approach

▪ Run ray generation on primary GPU

▪ Copy results in sub-regions to other GPUs

▪ Run tracing phases on separate GPUs

▪ Copy tracing results back to primary GPU

▪ Run filtering on primary GPU

Trace

GPU 2

Trace

GPU 1

Trace

GPU 3
Trace

GPU 4

Filter

S E E D // DirectX: Evolving Microsoft's Graphics Platform

Summary

▪ Just the beginning – important new tool going forward

▪ Unified API – easy to experiment and integrate

▪ Flexible but complex tradeoffs - noise vs ghosting vs perf

▪ Can enable very high quality cinematic visuals

▪ Lots more to explore – perf, raster vs trace, sparse render,

denoising, new techniques

S E E D // DirectX: Evolving Microsoft's Graphics Platform

SEED @ GDC 2018
▪ Shiny Pixels & Beyond: Rendering Research at SEED (presented by Nvidia)

▪ Johan Andersson and Colin Barré-Brisebois

▪ Room 3022, West Hall, Wednesday, March 21st, 5:00pm - 6:00pm

▪ Deep Learning - Beyond the Hype

▪ Magnus Nordin

▪ Room 2016, West Hall, Thursday, March 22nd, 11:30am - 12:30pm

▪ Creativity of Rules and Patterns: Designing Procedural Systems

▪ Anastasia Opara

▪ GDC Show Floor, Thursday, March 22nd, 12:30PM-1:00PM and

Friday, March 23rd @ 11:00AM-11:30AM

S E E D // DirectX: Evolving Microsoft's Graphics Platform

Thanks
S E E D // DirectX: Evolving Microsoft's Graphics Platform

▪ SEED

▪ Jasper Bekkers

▪ Joakim Bergdahl

▪ Ken Brown

▪ Dean Calver

▪ Dirk de la Hunt

▪ Jenna Frisk

▪ Paul Greveson

▪ Henrik Halen

▪ Effeli Holst

▪ Andrew Lauritzen

▪ Magnus Nordin

▪ Niklas Nummelin

▪ Anastasia Opara

▪ Kristoffer Sjöö

▪ Tomasz Stachowiak

▪ Ida Winterhaven

▪ Graham Wihlidal

▪ Microsoft
▪ Chas Boyd

▪ Ivan Nevraev

▪ Amar Patel

▪ Matt Sandy

▪ NVIDIA

▪ Tomas Akenine-Möller

▪ Nir Benty

▪ Jiho Choi

▪ Peter Harrison

▪ Alex Hyder

▪ Jon Jansen

▪ Aaron Lefohn

▪ Ignacio Llamas

▪ Henry Moreton

▪ Martin Stich

S E E D / / S E A R C H F O R E X T R A O R D I N A R Y E X P E R I E N C E S D I V I S I O N

S T O C K H O L M – L O S A N G E L E S – M O N T R É A L – R E M O T E

W W W . E A . C O M / S E E D

W E ‘ R E H I R I N G !

• Windows Insider Preview (RS4)

• Experimental SDK + spec: http://aka.ms/DXRSDK

• PIX-raytracing: http://aka.ms/DXRPIX

• DXR overview: http://aka.ms/DXR

• Give us feedback (really!): http://forums.directxtech.com

How to get started

http://aka.ms/DXRSDK
http://aka.ms/DXRPIX
http://aka.ms/DXR
http://forums.directxtech.com/

• We invite articles on the following topics:
Basic ray tracing algorithms, effects (shadows, reflections, etc.), non-graphics applications,

reconstruction, denoising, & filtering, efficiency and best practices, baking & preprocessing, ray

tracing API & design, rasterization and ray tracing, global Illumination, BRDFs, VR, deep learning, etc.

• Important dates:

• 15th of October 2018: submission deadline for full papers

• GDC 2019: publication of Ray Tracing Gems (paper version + e-book)

• Eric Haines and Tomas Akenine-Möller will lead the editorial team

http://developer.nvidia.com/raytracinggems/

Ray Tracing Gems – Call for Papers

• A new book series with focus on real-time and

interactive ray tracing for game development

using the DXR API.

Questions?

© 2018 Microsoft Corporation.

All rights reserved. Microsoft, Xbox, Windows, and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The

information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must

respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any

information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

