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• Why Raytracing?

• DXR Deep Dive

• Tools & Helpers

• Applied Raytracing (EA/SEED)

• Get Started

Agenda



• Solving the Visibility Problem

3D Graphics is a Lie



• Dynamic Shadows

• Environment Mapping

• Reflections

• Global Illumination

Emergence of Exceptions



• 1999 – Hardware T&L

• 2000 – Simple Programmable Shaders

• 2002 – Complex Programmable Shaders

• 2008 – Compute Shaders

• 2014 – Asynchronous Compute

• 2018…

A Brief History of Pixels



• 1999 – Hardware T&L

• 2000 – Simple Programmable Shaders

• 2002 – Complex Programmable Shaders

• 2008 – Compute Shaders

• 2014 – Asynchronous Compute

• 2018 – DirectX Raytracing

A Brief History of Pixels



1. Construct a 3D representation of a scene.

2. Trace rays into the scene from a point of interest (e.g. camera).

3. Accumulate data about ray intersections.

4. Optional: go to step 2.

5. Process the accumulated data to form an image.

Raytracing 101
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Raytracing Requirements
• Scene geometry representation

• Trace rays into scene and get intersections

• Determine and execute material shaders



Raytracing Requirements
• Scene geometry representation

• Trace rays into scene and get intersections

• Determine and execute material shaders



Acceleration Structures
• Opaque buffers that represent a scene

• Constructed on the GPU

• Two-level hierarchy [M] [M] [M] [M]



• Triangles

• Vertex Buffer (float16x3 or float32x3)

• Index Buffer (uint16 or uint32)

• Transformation matrix

• Programmable Geometry

• Defined using shader code

• Specify enclosing AABBs

Geometries



• Defined by a set of geometries

• Built on the GPU, written to opaque buffer

Bottom-Level Acceleration Structure



• Defined by a set of instances of bottom-level structures

• Built on the GPU, written to opaque buffer

• Transformation matrix for each instance

Top-Level Acceleration Structures

[M][M][M]



• Prebuild info

• Query driver for allocation requirements

• Returns conservative result and scratch sizes required

• Postbuild info available

• Query compacted size for reallocation

• Updates supported

• Incrementally update top/bottom level structs

• Can do async full rebuild when drifting too far

Acceleration Structure Details



Acceleration Structure Recap

[M] [M] [M] [M]
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Ray Generation Shader
• Invoked via CommandList::DispatchRays()

• Specify 2D grid of threads

• Emit any number of rays per thread

• Use TraceRay intrinsic

• Write traversal results to UAVs



TraceRay Intrinsic
• Origin

• Direction

• TMin/TMax

• App-defined “payload”



Determining Intersections
• Triangle Geometry

• Determination: Automatic

• Attributes: Barycentrics

• Programmable Geometry

• Determination: Intersection Shaders

• Attributes: Application-defined



• Everything new requires the DXIL compiler

✔ dxc.exe / dxcompiler.dll

❌ fxc.exe / d3dcompiler_47.dll

• Get it here: http://aka.ms/HLSL

• For DXR, use the pre-built binary in the experimental SDK

DXC / DXIL

http://aka.ms/HLSL
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• Invoked at geometry intersection points

• Access to intersection attributes (tri: barycentrics)

• Read/write access to app-defined ray payload

• Call TraceRay() for recursive traversal

Hit Shaders



• Invoked for all intersections along ray path

• Read attributes, modify ray payload for subsequent hit shaders

• May call IgnoreHit() / AcceptHitAndEndSearch()

Any-Hit Shaders



• Invoked for closest accepted intersection along ray path

• Read attributes, modify ray payload for TraceRay() caller

Closest-Hit Shaders



• Invoked for closest accepted intersections along ray path

• Read attributes, modify ray payload for TraceRay() caller

• Trace more rays

Closest-Hit Shaders



• Invoked for rays with no accepted hits through TMax

• May trace more rays (e.g. into lower-LOD acceleration structure)

• Return transparent-black, sample skybox, etc.

Miss Shader



• Rays can intersect any geometry, need any shader, any resource

• Bindless resources (arbitrarily indexable table)

• Bindless shaders

Which Shaders to Run?

✔

?



• Rays can intersect any geometry, need any shader, any resource

• Bindless resources (arbitrarily indexable table)

• Bindless shaders: shader tables

Which Shaders to Run?

✔

✔



• GPU buffer of “shader records”

• Shader ID

• Root arguments

• Flexible indexing in DXR

• Instance properties

• DispatchRays arguments

• TraceRay arguments

• Shader IDs acquired from “state objects”

Shader Tables

Shader A

Root CBV M

Descriptor Table X

Shader B

Root CBV N

Descriptor Table Y

…



• Set of shaders and root signatures

• Associate root signatures with DXIL library exports

• Create pipeline-specific sub-objects and associations

• Flexibility to support future pipelines

• State Object Properties interface for post-compile information

State Objects (PSOs v2)



• Configure maximum ray recursion depth

• Configure ray payload and attribute size

• Create “hit groups” from individual shaders

• 0/1 intersection shader

• 0/1 any-hit shader

• 0/1 closest-hit shader

• Use state object properties interface to get:

• Ray generation shader IDs

• Miss shader IDs

• Hit group IDs

Raytracing State Objects



Raytracing Requirements
• Scene geometry representation

• Trace rays into scene and get intersections

• Determine and execute material shaders



• Create state objects with set of potential material shaders

• Create top/bottom level acceleration structures

• Create shader tables with hit groups / root parameters

• Call DispatchRays

• Invoke ray-generation shader, call TraceRay()

• Execute hit shaders, write results into a UAV

• Incorporate UAV results into final scene render

Putting it All Together



• PIX support available now

• See also: Direct3D Graphics Debugging and Optimization

• Thursday 12:45 PM, Room 2009, West Hall (this room)

• Fallback layer

• Open-source reference implementation

• Compute shader based (requires DXIL support)

• VS/PS  Hit Group conversion

• Reuse existing shader content

• Raytracing helper header

• Very useful for building state objects

Tools





State Object Trees



State Object Trees

Shader Tables



State Object Trees

Shader Tables

Acceleration Structure Visualization



DirectX: Evolving Microsoft's Graphics Platform

Johan Andersson & Colin Barré-Brisebois
Electronic Arts





Video

S E E D //  DirectX: Evolving Microsoft's Graphics Platform



“PICA PICA”
Exploratory mini-game & world

▪ For our self-learning AI agents to play, not for 
humans ☺

▪ Uses SEED’s Halcyon R&D engine

▪ Goals

▪ Explore hybrid raytracing with DXR

▪ Clean and consistent visuals

▪ Procedurally-generated worlds

▪ No precomputation

S E E D //  DirectX: Evolving Microsoft's Graphics Platform



Why raytracing?

▪ Flexible new tool in the toolbox

▪ Solve sparse & incoherent problems

▪ Unified API + performance (DXR + RTX)

▪ Simple high quality - easy ground truth

S E E D //  DirectX: Evolving Microsoft's Graphics Platform



Hybrid Rendering Pipeline

Direct shadows 
(raytrace or raster)

Direct lighting (compute) Reflections (raytrace)Deferred shading (raster)

Global Illumination (raytrace) Post processing (compute)Transparency & Translucency 
(raytrace)

Ambient occlusion 
(raytrace or compute)

S E E D //  DirectX: Evolving Microsoft's Graphics Platform



Live demo

S E E D //  DirectX: Evolving Microsoft's Graphics Platform



?
▪ Spawn a Mesh?

▪ DXR: build its bottom acceleration structure

▪ Multiple geometries for multiple materials

▪ Triangles, AABBs, custom

▪ Mesh instances specified in top acceleration

▪ Move a Mesh?

▪ Update the instance’s position/orientation in the 

top acceleration

▪ Spawn [some] Rays?

▪ Multiple Hit and Miss shaders possible

Mesh 1 Mesh 2 Mesh 3

Bottom Acceleration

Inst. 1 Inst. 2 Inst. 3 Inst. 4 Inst. 5

Top Acceleration

Shader Table

R R R R M M
…… …

H H H H H H H H H H H H H H H

S E E D //  DirectX: Evolving Microsoft's Graphics Platform



Raytraced Reflections
▪ Rasterize primary visibility

▪ Launch rays from the G-Buffer

▪ Raytrace at half resolution

▪ Reconstruct at full resolution

▪ Spatiotemporal filtering 

▪ Works on both flat and curved surfaces

Raytraced Reflections

S E E D //  DirectX: Evolving Microsoft's Graphics Platform



Reflection Rays
Let’s launch some reflection rays:

1. Select one of the (2x2) pixels to trace

2. Reconstruct position and vectors

3. Initialize Halton & random number seq.

4. Initialize the payload

5. Prepare a new ray

6. Trace

7. Gather results from ray payload

▪ Reflection Color, Direction, HitT, 1/pdf

Reflections Raytracing HLSL Pseudo-Code

1

2

3

4

5

6

7

S E E D //  DirectX: Evolving Microsoft's Graphics Platform



Reflection Filtering
Inspired by Stochastic Screen-Space Reflections [Stachowiak 2015]

▪ For every full-res pixel, sample 16 pixels in half-res ray results

▪ Blue Noise offsets, decorrelated every 2x2 pixels

▪ Build color bounding box of ray-hit results

▪ Clamp temporal history to bounding box

▪ Followed by a variance-driven bilateral filter

▪ Helps with rough reflections

Unfiltered (Top) and Filtered (Bottom) Results

S E E D //  DirectX: Evolving Microsoft's Graphics Platform





Screen-Space Reflections G-Buffer Raytraced Path Tracing Reference



Screen-Space Reflections G-Buffer Raytraced Path Tracing Reference



Ambient Occlusion
Ambient Occlusion (AO) [Langer 1994] [Miller 1994] maps and scales directly 
with real-time ray tracing:

▪ Integral of the visibility function over the hemisphere Ω for the point p

on a surface with normal ොn with respect to the projected solid angle

▪ Games often approximate this in screen-space 

▪ With RT, more grounded & improves visual fidelity!

▪ Random directions ෝw

▪ Can be temporally accumulated or denoised

S E E D //  DirectX: Evolving Microsoft's Graphics Platform
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Screen-Space AO



Raytraced AO



Screen-Space AO



Raytraced AO 
(Same Radius as SSAO)



Raytraced AO 
(Far-field)



mGPU

Ray 

Generation

Copy Sub Regions

Copy Sub Regions

GPU1 GPU2 GPU3 GPU4
Explicit Heterogenous Multi-GPU

▪ Parallel Fork-Join Style

▪ Resources copied through system memory using copy 

queue

▪ Minimize PCI-E transfers

▪ Approach

▪ Run ray generation on primary GPU

▪ Copy results in sub-regions to other GPUs

▪ Run tracing phases on separate GPUs

▪ Copy tracing results back to primary GPU

▪ Run filtering on primary GPU

Trace 

GPU 2

Trace 

GPU 1

Trace 

GPU 3
Trace 

GPU 4

Filter

S E E D //  DirectX: Evolving Microsoft's Graphics Platform



Summary

▪ Just the beginning – important new tool going forward

▪ Unified API – easy to experiment and integrate

▪ Flexible but complex tradeoffs - noise vs ghosting vs perf

▪ Can enable very high quality cinematic visuals

▪ Lots more to explore – perf, raster vs trace, sparse render, 

denoising, new techniques

S E E D //  DirectX: Evolving Microsoft's Graphics Platform



SEED @ GDC 2018
▪ Shiny Pixels & Beyond: Rendering Research at SEED (presented by Nvidia)

▪ Johan Andersson and Colin Barré-Brisebois

▪ Room 3022, West Hall, Wednesday, March 21st, 5:00pm - 6:00pm

▪ Deep Learning - Beyond the Hype

▪ Magnus Nordin

▪ Room 2016, West Hall, Thursday, March 22nd, 11:30am - 12:30pm

▪ Creativity of Rules and Patterns: Designing Procedural Systems

▪ Anastasia Opara

▪ GDC Show Floor, Thursday, March 22nd, 12:30PM-1:00PM and 

Friday, March 23rd @ 11:00AM-11:30AM

S E E D //  DirectX: Evolving Microsoft's Graphics Platform



Thanks
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▪ Ida Winterhaven
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▪ Microsoft
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▪ Matt Sandy
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▪ Jiho Choi

▪ Peter Harrison

▪ Alex Hyder

▪ Jon Jansen
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▪ Ignacio Llamas

▪ Henry Moreton

▪ Martin Stich
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• Windows Insider Preview (RS4)

• Experimental SDK + spec: http://aka.ms/DXRSDK

• PIX-raytracing: http://aka.ms/DXRPIX

• DXR overview: http://aka.ms/DXR

• Give us feedback (really!): http://forums.directxtech.com

How to get started

http://aka.ms/DXRSDK
http://aka.ms/DXRPIX
http://aka.ms/DXR
http://forums.directxtech.com/


• We invite articles on the following topics:
Basic ray tracing algorithms, effects (shadows, reflections, etc.), non-graphics applications, 

reconstruction, denoising, & filtering, efficiency and best practices, baking & preprocessing, ray 

tracing API & design, rasterization and ray tracing, global Illumination, BRDFs, VR, deep learning, etc.

• Important dates:

• 15th of October 2018: submission deadline for full papers

• GDC 2019: publication of Ray Tracing Gems (paper version + e-book)

• Eric Haines and Tomas Akenine-Möller will lead the editorial team

http://developer.nvidia.com/raytracinggems/

Ray Tracing Gems – Call for Papers

• A new book series with focus on real-time and

interactive ray tracing for game development

using the DXR API.



Questions?
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